
H2 Database Engine
Version 2.3.230 (2024-07-15)

1 of 436

Table of Contents

Quickstart..25
Embedding H2 in an Application..25
The H2 Console Application...25

Step-by-Step...25
Installation...25
Start the Console...26
Login..26
Sample...27
Execute..28
Disconnect...29
End..29

Installation..30
Requirements...30

Database Engine...30
H2 Console..30

Supported Platforms..30
Installing the Software...30
Directory Structure..30

Tutorial..32
Starting and Using the H2 Console..32

Firewall...34
Testing Java..34
Error Message 'Port may be in use'...34
Using another Port..34
Connecting to the Server using a Browser..35
Multiple Concurrent Sessions..35
Login...35
Error Messages...35
Adding Database Drivers..35
Using the H2 Console..36
Inserting Table Names or Column Names...36
Disconnecting and Stopping the Application.......................................36

Special H2 Console Syntax...36
Settings of the H2 Console...38
Connecting to a Database using JDBC..39
Creating New Databases..39
Using the Server..40

Starting the Server Tool from Command Line.....................................41
Connecting to the TCP Server...41
Starting the TCP Server within an Application....................................41
Stopping a TCP Server from Another Process.....................................42

2 of 436

Using Hibernate...42
Using TopLink and Glassfish...42
Using EclipseLink...43
Using Apache ActiveMQ...43
Using H2 within NetBeans..43
Using H2 with jOOQ..44
Using Databases in Web Applications..45

Embedded Mode...45
Server Mode..45
Using a Servlet Listener to Start and Stop a Database.......................45
Using the H2 Console Servlet..47

CSV (Comma Separated Values) Support...48
Reading a CSV File from Within a Database.......................................48
Importing Data from a CSV File...48
Writing a CSV File from Within a Database...48
Writing a CSV File from a Java Application..49
Reading a CSV File from a Java Application..49

Upgrade, Backup, and Restore...50
Database Upgrade..50
Backup using the Script Tool..50
Restore from a Script..50
Online Backup...51

Command Line Tools..51
The Shell Tool...52
Using OpenOffice Base...53
Java Web Start / JNLP...54
Using a Connection Pool...54
Fulltext Search...55

Using the Native Fulltext Search...55
Using the Apache Lucene Fulltext Search...56

User-Defined Variables...57
Date and Time..58
Using Spring...59

Using the TCP Server..59
OSGi...59
Java Management Extension (JMX)...59

Features..61
Feature List..62

Main Features...62
Additional Features...62
SQL Support..62
Security Features..63
Other Features and Tools..63

H2 in Use..64
3 of 436

Connection Modes..64
Embedded Mode...64
Server Mode..65
Mixed Mode...65

Database URL Overview...66
Connecting to an Embedded (Local) Database......................................68
In-Memory Databases..68
Database Files Encryption..69

Creating a New Database with File Encryption...................................69
Connecting to an Encrypted Database..69
Encrypting or Decrypting a Database...69

Database File Locking..70
Opening a Database Only if it Already Exists...70
Closing a Database..71

Delayed Database Closing..71
Don't Close a Database when the VM Exits..71

Execute SQL on Connection...72
Ignore Unknown Settings...72
Changing Other Settings when Opening a Connection..........................73
Custom File Access Mode...73
Multiple Connections..73

Opening Multiple Databases at the Same Time..................................73
Multiple Connections to the Same Database: Client/Server................73
Multithreading Support...73
Locking, Lock-Timeout, Deadlocks..74

Database File Layout..75
Moving and Renaming Database Files..75
Backup..76

Logging and Recovery..76
Compatibility..76

Compatibility Modes...76
REGULAR Compatibility mode...76
STRICT Compatibility Mode...77
LEGACY Compatibility Mode..77
DB2 Compatibility Mode...78
Derby Compatibility Mode...79
HSQLDB Compatibility Mode...79
MS SQL Server Compatibility Mode...79
MariaDB Compatibility Mode...80
MySQL Compatibility Mode...81
Oracle Compatibility Mode..83
PostgreSQL Compatibility Mode..83

Auto-Reconnect..84
Automatic Mixed Mode...85

4 of 436

Page Size..86
Using the Trace Options...86

Trace Options..86
Setting the Maximum Size of the Trace File..87
Java Code Generation...87

Using Other Logging APIs...87
Read Only Databases...88
Read Only Databases in Zip or Jar File...88

Opening a Corrupted Database..89
Generated Columns (Computed Columns) / Function Based Index........89
Multi-Dimensional Indexes...90
User-Defined Functions and Stored Procedures.....................................91

Referencing a Compiled Method...91
Declaring Functions as Source Code...91
Method Overloading..92
Function Data Type Mapping..93
Functions That Require a Connection...93
Functions Throwing an Exception...93
Functions Returning a Result Set..93
Using SimpleResultSet..94
Using a Function as a Table..94

Pluggable or User-Defined Tables..95
Triggers..96
Compacting a Database...97
Cache Settings...98
External authentication (Experimental)...98

Securing your H2...101
Introduction..101
Network exposed...101
Alias / Stored procedures...101
Grants / Roles / Permissions...101
Encrypted storage..101

Performance..103
Performance Comparison...103

Embedded...103
Client-Server...104
Benchmark Results and Comments..105

H2..105
HSQLDB...105
Derby...105
PostgreSQL..106
MySQL..106
SQLite..106
Firebird..107

5 of 436

Why Oracle / MS SQL Server / DB2 are Not Listed.........................107
About this Benchmark...107

How to Run..107
Separate Process per Database...107
Number of Connections...107
Real-World Tests..107
Comparing Embedded with Server Databases...............................108
Test Platform...108
Multiple Runs...108
Memory Usage...108
Delayed Operations...108
Transaction Commit / Durability..108
Using Prepared Statements...109
Currently Not Tested: Startup Time...109

PolePosition Benchmark...109
Database Performance Tuning...110

Keep Connections Open or Use a Connection Pool...........................110
Use a Modern JVM...111
Virus Scanners..111
Using the Trace Options..111
Index Usage..111
Index Hints..112
How Data is Stored Internally...112
Optimizer..113
Expression Optimization...113
COUNT(*) Optimization...113
Updating Optimizer Statistics / Column Selectivity...........................113
In-Memory (Hash) Indexes..114
Use Prepared Statements...114
Prepared Statements and IN(...)...114
Optimization Examples...115
Cache Size and Type...115
Data Types..115
Sorted Insert Optimization..115

Using the Built-In Profiler...116
Application Profiling...116

Analyze First...116
Database Profiling..117
Statement Execution Plans..118

Displaying the Scan Count..119
Special Optimizations...119

How Data is Stored and How Indexes Work...120
Indexes...121
Using Multiple Indexes..123

6 of 436

Fast Database Import...123
Advanced..124

Result Sets...125
Statements that Return a Result Set..125
Limiting the Number of Rows..125
Large Result Sets and External Sorting...125

Large Objects...125
Storing and Reading Large Objects...125
When to use CLOB/BLOB...125

Linked Tables...126
Updatable Views..127
Transaction Isolation..127

Multi-Version Concurrency Control (MVCC).......................................128
Lock Timeout..129

Clustering / High Availability..129
Using the CreateCluster Tool..130
Detect Which Cluster Instances are Running....................................131
Clustering Algorithm and Limitations..131

Two Phase Commit...132
Compatibility..132

Transaction Commit when Autocommit is On...................................132
Keywords / Reserved Words...133
Standards Compliance...137

Supported Character Sets, Character Encoding, and Unicode..........137
Run as Windows Service..137

Install the Service...138
Start the Service...138
Connect to the H2 Console...138
Stop the Service..138
Uninstall the Service...138
Additional JDBC drivers...139

ODBC Driver...139
ODBC Installation..139
Starting the Server..139
ODBC Configuration..140
PG Protocol Support Limitations..141
Security Considerations..141
Using Microsoft Access...141

ACID...141
Atomicity...142
Consistency...142
Isolation..142
Durability..142

Durability Problems..142
7 of 436

Ways to (Not) Achieve Durability..143
Running the Durability Test..144

Using the Recover Tool..144
File Locking Protocols...145

File Locking Method 'File'..146
File Locking Method 'Socket'...147
File Locking Method 'FS'..147

Using Passwords..148
Using Secure Passwords...148
Passwords: Using Char Arrays instead of Strings..............................148
Passing the User Name and/or Password in the URL.........................149

Password Hash...149
Protection against SQL Injection..150

What is SQL Injection..150
Disabling Literals..150
Using Constants..151
Using the ZERO() Function..151

Protection against Remote Access...152
Restricting Class Loading and Usage...152
Security Protocols..153

User Password Encryption...153
File Encryption..154
Wrong Password / User Name Delay...155
HTTPS Connections...155

TLS Connections...155
Universally Unique Identifiers (UUID)...156
Spatial Features...156
Recursive Queries..157
Settings Read from System Properties...159
Setting the Server Bind Address..159
Pluggable File System..159
Split File System...160
Java Objects Serialization...161
Limits and Limitations..161
Glossary and Links...163

Commands..164
Index..164

Commands (Data Manipulation)...164
Commands (Data Definition)...164
Commands (Other)...166

Details..167
Commands (Data Manipulation)...167

SELECT..167
INSERT..170

8 of 436

UPDATE...170
DELETE...171
BACKUP...171
CALL..171
EXECUTE IMMEDIATE..172
EXPLAIN..172
MERGE INTO..172
MERGE USING...173
RUNSCRIPT..174
SCRIPT..175
SHOW..176
Explicit table...176
Table value...176
WITH...177

Commands (Data Definition)..177
ALTER DOMAIN...177
ALTER DOMAIN ADD CONSTRAINT..178
ALTER DOMAIN DROP CONSTRAINT..178
ALTER DOMAIN RENAME...179
ALTER DOMAIN RENAME CONSTRAINT..179
ALTER INDEX RENAME..179
ALTER SCHEMA RENAME...179
ALTER SEQUENCE...180
ALTER TABLE ADD...180
ALTER TABLE ADD CONSTRAINT...180
ALTER TABLE RENAME CONSTRAINT...181
ALTER TABLE ALTER COLUMN...181
ALTER TABLE DROP COLUMN..183
ALTER TABLE DROP CONSTRAINT...183
ALTER TABLE SET..184
ALTER TABLE RENAME..184
ALTER USER ADMIN..184
ALTER USER RENAME..184
ALTER USER SET PASSWORD..185
ALTER VIEW RECOMPILE...185
ALTER VIEW RENAME..185
ANALYZE...186
COMMENT ON...186
CREATE AGGREGATE..187
CREATE ALIAS...187
CREATE CONSTANT...188
CREATE DOMAIN...189
CREATE INDEX..189
CREATE LINKED TABLE..190

9 of 436

CREATE ROLE..191
CREATE SCHEMA...191
CREATE SEQUENCE...192
CREATE TABLE..192
CREATE TRIGGER..194
CREATE USER..195
CREATE VIEW..196
CREATE MATERIALIZED VIEW..196
DROP AGGREGATE..197
DROP ALIAS...197
DROP ALL OBJECTS...197
DROP CONSTANT..198
DROP DOMAIN...198
DROP INDEX..198
DROP ROLE...198
DROP SCHEMA..199
DROP SEQUENCE..199
DROP TABLE..199
DROP TRIGGER...200
DROP USER...200
DROP VIEW...200
DROP MATERIALIZED VIEW...200
REFRESH MATERIALIZED VIEW..201
TRUNCATE TABLE..201

Commands (Other)...201
CHECKPOINT...201
CHECKPOINT SYNC..202
COMMIT...202
COMMIT TRANSACTION...202
GRANT RIGHT..202
GRANT ALTER ANY SCHEMA..203
GRANT ROLE...203
HELP..203
PREPARE COMMIT...204
REVOKE RIGHT..204
REVOKE ALTER ANY SCHEMA..204
REVOKE ROLE...204
ROLLBACK...205
ROLLBACK TRANSACTION...205
SAVEPOINT..205
SET @...205
SET ALLOW_LITERALS...206
SET AUTOCOMMIT...206
SET CACHE_SIZE...207

10 of 436

SET CLUSTER..207
SET BUILTIN_ALIAS_OVERRIDE..208
SET CATALOG..208
SET COLLATION...208
SET DATABASE_EVENT_LISTENER...209
SET DB_CLOSE_DELAY..209
SET DEFAULT_LOCK_TIMEOUT..210
SET DEFAULT_NULL_ORDERING..210
SET DEFAULT_TABLE_TYPE...211
SET EXCLUSIVE...211
SET IGNORECASE..212
SET IGNORE_CATALOGS..212
SET JAVA_OBJECT_SERIALIZER..213
SET LAZY_QUERY_EXECUTION..213
SET LOCK_MODE...214
SET LOCK_TIMEOUT..214
SET MAX_LENGTH_INPLACE_LOB..214
SET MAX_LOG_SIZE...215
SET MAX_MEMORY_ROWS...215
SET MAX_MEMORY_UNDO...215
SET MAX_OPERATION_MEMORY..216
SET MODE...216
SET NON_KEYWORDS..217
SET OPTIMIZE_REUSE_RESULTS..217
SET PASSWORD..217
SET QUERY_STATISTICS..218
SET QUERY_STATISTICS_MAX_ENTRIES...218
SET QUERY_TIMEOUT..218
SET REFERENTIAL_INTEGRITY...219
SET RETENTION_TIME...219
SET SALT HASH...219
SET SCHEMA...220
SET SCHEMA_SEARCH_PATH...220
SET SESSION CHARACTERISTICS...220
SET THROTTLE..221
SET TIME ZONE...221
SET TRACE_LEVEL...222
SET TRACE_MAX_FILE_SIZE...222
SET TRUNCATE_LARGE_LENGTH...222
SET VARIABLE_BINARY..223
SET WRITE_DELAY...223
SHUTDOWN...223

Functions...225
Index..225

11 of 436

Numeric Functions..225
String Functions..226
Time and Date Functions..227
System Functions..228
JSON Functions..229
Table Functions...230

Details..230
Numeric Functions...230

ABS...230
ACOS...230
ASIN..231
ATAN...231
COS...231
COSH...231
COT...232
SIN..232
SINH..232
TAN...232
TANH...233
ATAN2...233
BITAND..233
BITOR..233
BITXOR..234
BITNOT..234
BITNAND...234
BITNOR..235
BITXNOR...235
BITGET..235
BITCOUNT...236
LSHIFT...236
RSHIFT..236
ULSHIFT..237
URSHIFT..237
ROTATELEFT...237
ROTATERIGHT...238
MOD..238
CEIL...238
DEGREES...239
EXP...239
FLOOR...239
LN...239
LOG...239
LOG10...240
ORA_HASH..240

12 of 436

RADIANS...240
SQRT...241
PI...241
POWER..241
RAND..241
RANDOM_UUID..242
ROUND..242
SECURE_RAND..242
SIGN..242
ENCRYPT...243
DECRYPT...243
HASH...243
TRUNC...244
COMPRESS..244
EXPAND...244
ZERO...245

String Functions...245
ASCII...245
BIT_LENGTH..245
CHAR_LENGTH..245
OCTET_LENGTH...246
CHAR...246
CONCAT..246
CONCAT_WS..246
DIFFERENCE..247
HEXTORAW...247
RAWTOHEX...247
INSERT Function..247
LOWER..248
UPPER...248
LEFT..248
RIGHT..248
LOCATE...248
LPAD...249
RPAD...249
LTRIM..249
RTRIM..250
BTRIM..250
TRIM..250
REGEXP_REPLACE...250
REGEXP_LIKE...251
REGEXP_SUBSTR...252
REPEAT...252
REPLACE...252

13 of 436

SOUNDEX..253
SPACE...253
STRINGDECODE..253
STRINGENCODE..253
STRINGTOUTF8...254
SUBSTRING...254
UTF8TOSTRING...254
QUOTE_IDENT...254
XMLATTR...255
XMLNODE..255
XMLCOMMENT...255
XMLCDATA..255
XMLSTARTDOC..256
XMLTEXT...256
TO_CHAR...256
TRANSLATE...256

Time and Date Functions...257
CURRENT_DATE..257
CURRENT_TIME...257
CURRENT_TIMESTAMP...257
LOCALTIME..258
LOCALTIMESTAMP...258
DATEADD..259
DATEDIFF..259
DATE_TRUNC...260
LAST_DAY..260
DAYNAME..260
DAY_OF_MONTH..260
DAY_OF_WEEK..261
ISO_DAY_OF_WEEK...261
DAY_OF_YEAR...261
EXTRACT...261
FORMATDATETIME..262
HOUR..262
MINUTE...262
MONTH..263
MONTHNAME...263
PARSEDATETIME...263
QUARTER..264
SECOND..264
WEEK..264
ISO_WEEK...264
YEAR...265
ISO_YEAR..265

14 of 436

System Functions...265
ABORT_SESSION...265
ARRAY_GET...265
CARDINALITY...266
ARRAY_CONTAINS...266
ARRAY_CAT...266
ARRAY_APPEND...267
ARRAY_MAX_CARDINALITY..267
TRIM_ARRAY..267
ARRAY_SLICE...267
AUTOCOMMIT..268
CANCEL_SESSION..268
CASEWHEN Function...268
COALESCE...268
CONVERT..269
CURRVAL...269
CSVWRITE...269
CURRENT_SCHEMA...270
CURRENT_CATALOG..270
DATABASE_PATH...270
DATA_TYPE_SQL..271
DB_OBJECT_ID...272
DB_OBJECT_SQL..272
DB_OBJECT_SIZE...272
DB_OBJECT_TOTAL_SIZE...273
DB_OBJECT_APPROXIMATE_SIZE...273
DB_OBJECT_APPROXIMATE_TOTAL_SIZE...273
DECODE..274
DISK_SPACE_USED..274
SIGNAL..274
ESTIMATED_ENVELOPE...275
FILE_READ...275
FILE_WRITE...275
GREATEST...276
LEAST..276
LOCK_MODE..276
LOCK_TIMEOUT...276
MEMORY_FREE..277
MEMORY_USED...277
NEXTVAL...277
NULLIF...278
NVL2...278
READONLY..278
ROWNUM..278

15 of 436

SESSION_ID...279
SET..279
TRANSACTION_ID..279
TRUNCATE_VALUE...280
CURRENT_PATH..280
CURRENT_ROLE..280
CURRENT_USER..280
H2VERSION...281

JSON Functions...281
JSON_OBJECT...281
JSON_ARRAY..281

Table Functions..282
CSVREAD..282
LINK_SCHEMA...283
TABLE..283
UNNEST...283

Aggregate Functions...285
Index..285

General Aggregate Functions...285
Binary Set Functions...285
Ordered Aggregate Functions...286
Hypothetical Set Functions...286
Inverse Distribution Functions..286
JSON Aggregate Functions..286

Details..286
General Aggregate Functions...286

AVG...286
MAX...287
MIN..287
SUM...287
EVERY...288
ANY...288
COUNT..288
STDDEV_POP...289
STDDEV_SAMP..289
VAR_POP...289
VAR_SAMP...290
ANY_VALUE...290
BIT_AND_AGG...290
BIT_OR_AGG..291
BIT_XOR_AGG..291
BIT_NAND_AGG...291
BIT_NOR_AGG...291
BIT_XNOR_AGG...292

16 of 436

ENVELOPE...292
Binary Set Functions..292

COVAR_POP...292
COVAR_SAMP..293
CORR..293
REGR_SLOPE...293
REGR_INTERCEPT..294
REGR_COUNT..294
REGR_R2...294
REGR_AVGX..295
REGR_AVGY...295
REGR_SXX...295
REGR_SYY...295
REGR_SXY...296

Ordered Aggregate Functions..296
LISTAGG..296
ARRAY_AGG..297

Hypothetical Set Functions..297
RANK aggregate..297
DENSE_RANK aggregate...298
PERCENT_RANK aggregate...298
CUME_DIST aggregate..298

Inverse Distribution Functions..299
PERCENTILE_CONT..299
PERCENTILE_DISC...299
MEDIAN...300
MODE..300

JSON Aggregate Functions...300
JSON_OBJECTAGG..300
JSON_ARRAYAGG...301

Window Functions...302
Index..302

Row Number Function...302
Rank Functions...302
Lead or Lag Functions...302
Nth Value Functions..302
Other Window Functions...302

Details..302
Row Number Function..302

ROW_NUMBER..302
Rank Functions...303

RANK...303
DENSE_RANK..303
PERCENT_RANK...304

17 of 436

CUME_DIST...304
Lead or Lag Functions..305

LEAD...305
LAG...305

Nth Value Functions...306
FIRST_VALUE...306
LAST_VALUE..306
NTH_VALUE...307

Other Window Functions..307
NTILE...307
RATIO_TO_REPORT..308

Data Types..309
Index..309
Details..310
CHARACTER...310
CHARACTER VARYING..310
CHARACTER LARGE OBJECT...311
VARCHAR_IGNORECASE...312
BINARY...312
BINARY VARYING..313
BINARY LARGE OBJECT...313
BOOLEAN...313
TINYINT..314
SMALLINT...314
INTEGER...314
BIGINT..315
NUMERIC..315
REAL...315
DOUBLE PRECISION..316
DECFLOAT..316
DATE..316
TIME...317
TIME WITH TIME ZONE...318
TIMESTAMP...318
TIMESTAMP WITH TIME ZONE...319
INTERVAL...320
JAVA_OBJECT..320
ENUM...321
GEOMETRY...321
JSON...322
UUID...323
ARRAY..323
ROW...324
Interval Data Types..324

18 of 436

INTERVAL YEAR...324
INTERVAL MONTH...324
INTERVAL DAY...325
INTERVAL HOUR..325
INTERVAL MINUTE...325
INTERVAL SECOND..325
INTERVAL YEAR TO MONTH...326
INTERVAL DAY TO HOUR...326
INTERVAL DAY TO MINUTE..326
INTERVAL DAY TO SECOND...327
INTERVAL HOUR TO MINUTE...327
INTERVAL HOUR TO SECOND..327
INTERVAL MINUTE TO SECOND...328

SQL Grammar..329
Index..329

Literals..329
Datetime fields...330
Other Grammar...330

Details..333
Literals...333

Value...333
Approximate numeric...333
Array...334
Boolean...334
Bytes...334
Date..334
Date and time...335
Dollar Quoted String...335
Exact numeric...335
Hex Number..335
Octal Number..336
Binary Number..336
Int...336
GEOMETRY..336
JSON..337
Long..337
Null...337
Number...337
Numeric..338
String..338
UUID..339
Time..339
Time with time zone...339
Timestamp..340

19 of 436

Timestamp with time zone..340
Interval...340
INTERVAL YEAR...340
INTERVAL MONTH...341
INTERVAL DAY...341
INTERVAL HOUR..341
INTERVAL MINUTE...341
INTERVAL SECOND..342
INTERVAL YEAR TO MONTH...342
INTERVAL DAY TO HOUR...342
INTERVAL DAY TO MINUTE..342
INTERVAL DAY TO SECOND...342
INTERVAL HOUR TO MINUTE...343
INTERVAL HOUR TO SECOND..343
INTERVAL MINUTE TO SECOND...343

Datetime fields...344
Datetime field...344
Year field...344
Month field..344
Day of month field..344
Hour field..345
Minute field...345
Second field..345
Timezone hour field..345
Timezone minute field..345
Timezone second field..346
Millennium field...346
Century field...346
Decade field..346
Quarter field..347
Millisecond field..347
Microsecond field..347
Nanosecond field..347
Day of year field...347
ISO day of week field..348
ISO week field...348
ISO week year field...348
Day of week field..348
Week field...348
Week year field...349
Epoch field..349

Other Grammar..349
Alias..349
And Condition...349

20 of 436

Array element reference...350
Field reference..350
Array value constructor by query...350
Case expression..350
Simple case...351
Searched case..351
Cast specification..351
Cipher...353
Column Definition...353
Column Constraint Definition..354
Comment..355
Bracketed comment..355
Compare...356
Condition...356
Condition Right Hand Side..357
Comparison Right Hand Side..357
Quantified Comparison Right Hand Side...357
Null Predicate Right Hand Side...358
Distinct Predicate Right Hand Side...358
Quantified Distinct Predicate Right Hand Side..................................359
Boolean Test Right Hand Side...359
Type Predicate Right Hand Side..360
JSON Predicate Right Hand Side..360
Between Predicate Right Hand Side..360
In Predicate Right Hand Side..361
Like Predicate Right Hand Side...361
Regexp Predicate Right Hand Side...362
Nulls Distinct...362
Table Constraint Definition...362
Constraint Name Definition...363
Csv Options...363
Data Change Delta Table..364
Data Type or Domain..365
Data Type...365
Predefined Type..365
Digit..365
Expression..366
Factor..366
Grouping element...366
Hex...366
Index Column..367
Insert values...367
Interval qualifier..367
Join specification...367

21 of 436

Merge when clause...368
Merge when matched clause..368
Merge when not matched clause..368
Name..368
Operand..369
Override clause...369
Query..370
Quoted Name..370
Referential Constraint...371
References Specification...371
Referential Action...371
Script Compression Encryption...372
Select order..372
Row value expression...372
Select Expression..373
Sequence value expression..373
Sequence option...373
Alter sequence option...374
Alter identity column option..374
Basic sequence option..375
Set clause list..376
Sort specification..376
Sort specification list...376
Summand...376
Table Expression...377
Update target..377
Within group specification..377
Wildcard expression..378
Window name or specification..378
Window specification..378
Window frame...379
Window frame preceding..380
Window frame bound..380
Term...380
Time zone...381
Column...381

System Tables...383
Index..383
Information Schema...384

CHECK_CONSTRAINTS...384
COLLATIONS..384
COLUMNS..385
COLUMN_PRIVILEGES..388
CONSTANTS..389

22 of 436

CONSTRAINT_COLUMN_USAGE...391
DOMAINS..392
DOMAIN_CONSTRAINTS..394
ELEMENT_TYPES..395
ENUM_VALUES..397
FIELDS...397
INDEXES..399
INDEX_COLUMNS..400
INFORMATION_SCHEMA_CATALOG_NAME...401
IN_DOUBT...401
KEY_COLUMN_USAGE..402
LOCKS...402
PARAMETERS..403
QUERY_STATISTICS...405
REFERENTIAL_CONSTRAINTS..406
RIGHTS..407
ROLES...407
ROUTINES...407
SCHEMATA..410
SEQUENCES..411
SESSIONS..412
SESSION_STATE..413
SETTINGS..413
SYNONYMS..414
TABLES..414
TABLE_CONSTRAINTS..415
TABLE_PRIVILEGES..416
TRIGGERS...417
USERS...418
VIEWS...419

Range Table...419
Build..421

Portability...421
Environment...421
Building the Software...421

Using Apache Lucene..422
Using Maven 2...422

Using a Central Repository...422
Maven Plugin to Start and Stop the TCP Server................................422
Using Snapshot Version..422

Native Image..423
Using Eclipse..423
Translating...424
Submitting Source Code Changes..424

23 of 436

Reporting Problems or Requests..425
Automated Build..426
Generating Railroad Diagrams...426

History...427
Change Log..427
History of this Database Engine...427
Why Java..427
Supporters...428

Frequently Asked Questions..431
I Have a Problem or Feature Request...431
Are there Known Bugs? When is the Next Release?..........................431
Is this Database Engine Open Source?...432
Is Commercial Support Available?...432
How to Create a New Database?...432
How to Connect to a Database?..432
Where are the Database Files Stored?..432
What is the Size Limit (Maximum Size) of a Database?....................433
Is it Reliable?...433
Why is Opening my Database Slow?...434
My Query is Slow...434
H2 is Very Slow...435
Column Names are Incorrect?...435
Float is Double?..435
How to Translate this Project?..435
How to Contribute to this Project?..435

24 of 436

Quickstart
Embedding H2 in an Application
The H2 Console Application

Embedding H2 in an Application
This database can be used in embedded mode, or in server mode. To use
it in embedded mode, you need to:

• Add the h2*.jar to the classpath (H2 does not have any
dependencies)

• Use the JDBC driver class: org.h2.Driver
• The database URL jdbc:h2:~/test opens the database test in your

user home directory
• A new database is automatically created

The H2 Console Application
The Console lets you access a SQL database using a browser interface.

If you don't have Windows XP, or if something does not work as expected,
please see the detailed description in the Tutorial.

Step-by-Step

Installation

Install the software using the Windows Installer (if you did not yet do that).

25 of 436

Start the Console

Click [Start], [All Programs], [H2], and [H2 Console (Command Line)]:

A new console window appears:

Also, a new browser page should open with the URL http://localhost:8082.
You may get a security warning from the firewall. If you don't want other
computers in the network to access the database on your machine, you
can let the firewall block these connections. Only local connections are
required at this time.

Login

Select [Generic H2] and click [Connect]:

You are now logged in.

26 of 436

http://localhost:8082/

Sample

Click on the [Sample SQL Script]:

The SQL commands appear in the command area.

27 of 436

Execute

Click [Run]

On the left side, a new entry TEST is added below the database icon. The

28 of 436

operations and results of the statements are shown below the script.

Disconnect

Click on [Disconnect]:

to close the connection.

End

Close the console window. For more information, see the Tutorial.

29 of 436

Installation
Requirements
Supported Platforms
Installing the Software
Directory Structure

Requirements
To run this database, the following software stack is known to work. Other
software most likely also works, but is not tested as much.

Database Engine

• Windows, Mac OS X, or Linux
• Java 11 or newer

H2 Console

• Mozilla Firefox

Supported Platforms
As this database is written in Java, it can run on many different platforms.
It is tested with Java 11 and 17. All major operating systems (Windows,
Mac OS X, Linux, ...) are supported.

Installing the Software
To install the software, run the installer or unzip it to a directory of your
choice.

Directory Structure
After installing, you should get the following directory structure:

Directory Contents

bin JAR and batch files

docs Documentation

docs/html HTML pages

docs/javadoc Javadoc files

30 of 436

ext External dependencies (downloaded when building)

service Tools to run the database as a Windows Service

src Source files

src/docsrc Documentation sources

src/installer Installer, shell, and release build script

src/main Database engine source code

src/test Test source code

src/tools Tools and database adapters source code

31 of 436

Tutorial
Starting and Using the H2 Console
Special H2 Console Syntax
Settings of the H2 Console
Connecting to a Database using JDBC
Creating New Databases
Using the Server
Using Hibernate
Using TopLink and Glassfish
Using EclipseLink
Using Apache ActiveMQ
Using H2 within NetBeans
Using H2 with jOOQ
Using Databases in Web Applications
CSV (Comma Separated Values) Support
Upgrade, Backup, and Restore
Command Line Tools
The Shell Tool
Using OpenOffice Base
Java Web Start / JNLP
Using a Connection Pool
Fulltext Search
User-Defined Variables
Date and Time
Using Spring
OSGi
Java Management Extension (JMX)

Starting and Using the H2 Console
The H2 Console application lets you access a database using a browser.
This can be a H2 database, or another database that supports the JDBC
API.

32 of 436

This is a client/server application, so both a server and a client (a browser)
are required to run it.

Depending on your platform and environment, there are multiple ways to
start the H2 Console:

OS Start

Windows

Click [Start], [All Programs], [H2], and [H2 Console (Command
Line)]

An icon will be added to the system tray:
If you don't get the window and the system tray icon, then
maybe Java is not installed correctly (in this case, try another
way to start the application). A browser window should open
and point to the login page at http://localhost:8082.

Windows

Open a file browser, navigate to h2/bin, and double click on
h2.bat.
A console window appears. If there is a problem, you will see
an error message in this window. A browser window will open
and point to the login page (URL: http://localhost:8082).

Any
Double click on the h2*.jar file. This only works if the .jar suffix
is associated with Java.

Any

Open a console window, navigate to the directory h2/bin, and
type:

java -jar h2*.jar

If the console startup procedure is unable to locate the default system
web browser, an error message may be displayed. It is possible to
explicitly tell H2 which program/script to use when opening a system web
browser by setting either the BROWSER environment variable, or the
h2.browser java property.

33 of 436

Firewall

If you start the server, you may get a security warning from the firewall (if
you have installed one). If you don't want other computers in the network
to access the application on your machine, you can let the firewall block
those connections. The connection from the local machine will still work.
Only if you want other computers to access the database on this
computer, you need allow remote connections in the firewall.

It has been reported that when using Kaspersky 7.0 with firewall, the H2
Console is very slow when connecting over the IP address. A workaround
is to connect using 'localhost'.

A small firewall is already built into the server: other computers may not
connect to the server by default. To change this, go to 'Preferences' and
select 'Allow connections from other computers'.

Testing Java

To find out which version of Java is installed, open a command prompt and
type:

java -version

If you get an error message, you may need to add the Java binary
directory to the path environment variable.

Error Message 'Port may be in use'

You can only start one instance of the H2 Console, otherwise you will get
the following error message: "The Web server could not be started.
Possible cause: another server is already running...". It is possible to start
multiple console applications on the same computer (using different
ports), but this is usually not required as the console supports multiple
concurrent connections.

Using another Port

If the default port of the H2 Console is already in use by another
application, then a different port needs to be configured. The settings are
stored in a properties file. For details, see Settings of the H2 Console. The
relevant entry is webPort.

34 of 436

If no port is specified for the TCP and PG servers, each service will try to
listen on its default port. If the default port is already in use, a random
port is used.

Connecting to the Server using a Browser

If the server started successfully, you can connect to it using a web
browser. Javascript needs to be enabled. If you started the server on the
same computer as the browser, open the URL http://localhost:8082. If you
want to connect to the application from another computer, you need to
provide the IP address of the server, for example: http://192.168.0.2:8082.
If you enabled TLS on the server side, the URL needs to start with https://.

Multiple Concurrent Sessions

Multiple concurrent browser sessions are supported. As that the database
objects reside on the server, the amount of concurrent work is limited by
the memory available to the server application.

Login

At the login page, you need to provide connection information to connect
to a database. Set the JDBC driver class of your database, the JDBC URL,
user name, and password. If you are done, click [Connect].

You can save and reuse previously saved settings. The settings are stored
in a properties file (see Settings of the H2 Console).

Error Messages

Error messages in are shown in red. You can show/hide the stack trace of
the exception by clicking on the message.

Adding Database Drivers

To register additional JDBC drivers (MySQL, PostgreSQL, HSQLDB,...), add
the jar file names to the environment variables H2DRIVERS or CLASSPATH.
Example (Windows): to add the HSQLDB JDBC driver C:\Programs\hsqldb\
lib\hsqldb.jar, set the environment variable H2DRIVERS to C:\Programs\
hsqldb\lib\hsqldb.jar.

Multiple drivers can be set; entries need to be separated by ; (Windows) or
: (other operating systems). Spaces in the path names are supported. The
settings must not be quoted.

35 of 436

Using the H2 Console

The H2 Console application has three main panels: the toolbar on top, the
tree on the left, and the query/result panel on the right. The database
objects (for example, tables) are listed on the left. Type a SQL command
in the query panel and click [Run]. The result appears just below the
command.

Inserting Table Names or Column Names

To insert table and column names into the script, click on the item in the
tree. If you click on a table while the query is empty, then SELECT *
FROM ... is added. While typing a query, the table that was used is
expanded in the tree. For example if you type SELECT * FROM TEST T
WHERE T. then the table TEST is expanded.

Disconnecting and Stopping the Application

To log out of the database, click [Disconnect] in the toolbar panel.
However, the server is still running and ready to accept new sessions.

To stop the server, right click on the system tray icon and select [Exit]. If
you don't have the system tray icon, navigate to [Preferences] and click
[Shutdown], press [Ctrl]+[C] in the console where the server was started
(Windows), or close the console window.

Special H2 Console Syntax
The H2 Console supports a few built-in commands. Those are interpreted
within the H2 Console, so they work with any database. Built-in commands
need to be at the beginning of a statement (before any remarks),
otherwise they are not parsed correctly. If in doubt, add ; before the
command.

Command(s) Description

@autocommit_true;
@autocommit_false;

Enable or disable autocommit.

@cancel; Cancel the currently running statement.

@columns null null TEST;
@index_info null null TEST;
@tables;
@tables null null TEST;

Call the corresponding
DatabaseMetaData.get method. Patterns are
case sensitive (usually identifiers are
uppercase). For information about the

36 of 436

parameters, see the Javadoc documentation.
Missing parameters at the end of the line are
set to null. The complete list of metadata
commands is: @attributes,
@best_row_identifier, @catalogs, @columns,
@column_privileges, @cross_references,
@exported_keys, @imported_keys,
@index_info, @primary_keys, @procedures,
@procedure_columns, @pseudo_columns,
@schemas, @super_tables, @super_types,
@tables, @table_privileges, @table_types,
@type_info, @udts, @version_columns

@edit select * from test; Use an updatable result set.

@generated insert into test(
) values();
@generated(1) insert into te
st() values();
@generated(ID,
"TIMESTAMP") insert into tes
t() values();

Show the result of
Statement.getGeneratedKeys(). Names or
one-based indexes of required columns can
be optionally specified.

@history; List the command history.

@info;
Display the result of various Connection and
DatabaseMetaData methods.

@list select * from test;
Show the result set in list format (each
column on its own line, with row numbers).

@loop 1000 select ?, ?/*rnd*/;
@loop 1000 @statement
select ?;

Run the statement this many times.
Parameters (?) are set using a loop from 0 up
to x - 1. Random values are used for each
?/*rnd*/. A Statement object is used instead
of a PreparedStatement if @statement is
used. Result sets are read until
ResultSet.next() returns false. Timing
information is printed.

@maxrows 20; Set the maximum number of rows to display.

@memory;
Show the used and free memory. This will
call System.gc().

@meta select 1;
List the ResultSetMetaData after running the
query.

@parameter_meta select ?; Show the result of the
37 of 436

PreparedStatement.getParameterMetaData()
calls. The statement is not executed.

@prof_start;
call hash('SHA256', '', 10000
00);
@prof_stop;

Start/stop the built-in profiling tool. The top 3
stack traces of the statement(s) between
start and stop are listed (if there are 3).

@prof_start;
@sleep 10;
@prof_stop;

Sleep for a number of seconds. Used to
profile a long running query or operation that
is running in another session (but in the
same process).

@transaction_isolation;
@transaction_isolation 2;

Display (without parameters) or change (with
parameters 1, 2, 4, 8) the transaction
isolation level.

Settings of the H2 Console
The settings of the H2 Console are stored in a configuration file called
.h2.server.properties in you user home directory. For Windows
installations, the user home directory is usually C:\Documents and
Settings\[username] or C:\Users\[username]. The configuration file
contains the settings of the application and is automatically created when
the H2 Console is first started. Supported settings are:

• webAllowOthers: allow other computers to connect.
• webPort: the port of the H2 Console
• webSSL: use encrypted TLS (HTTPS) connections.
• webAdminPassword: hash of password to access preferences and

tools of H2 Console, use
org.h2.server.web.WebServer.encodeAdminPassword(String) to
generate a hash for your password. Always use long complex
passwords, especially when access from other hosts is enabled.

In addition to those settings, the properties of the last recently used
connection are listed in the form <number>=<name>|<driver>|<url>|
<user> using the escape character \. Example: 1=Generic H2
(Embedded)|org.h2.Driver|jdbc\:h2\:~/test|sa

38 of 436

Connecting to a Database using JDBC
To connect to a database, a Java application first needs to load the
database driver, and then get a connection. A simple way to do that is
using the following code:

import java.sql.*;
public class Test {
 public static void main(String[] a)
 throws Exception {
 Connection conn = DriverManager.
 getConnection("jdbc:h2:~/test", "sa", "");
 // add application code here
 conn.close();
 }
}

This code opens a connection (using DriverManager.getConnection()). The
driver name is "org.h2.Driver". The database URL always needs to start
with jdbc:h2: to be recognized by this database. The second parameter in
the getConnection() call is the user name (sa for System Administrator in
this example). The third parameter is the password. In this database, user
names are not case sensitive, but passwords are.

Creating New Databases
By default, if the database specified in the embedded URL does not yet
exist, a new (empty) database is created automatically. The user that
created the database automatically becomes the administrator of this
database.

Auto-creation of databases can be disabled, see Opening a Database Only
if it Already Exists.

H2 Console does not allow creation of databases unless a browser window
is opened by Console during its startup or from its icon in the system tray
and remote access is not enabled. A context menu of the tray icon can
also be used to create a new database.

You can also create a new local database from a command line with a
Shell tool:

> java -cp h2-*.jar org.h2.tools.Shell

39 of 436

Welcome to H2 Shell
Exit with Ctrl+C
[Enter] jdbc:h2:mem:2
URL jdbc:h2:./path/to/database
[Enter] org.h2.Driver
Driver
[Enter] sa
User your_username
Password (hidden)
Type the same password again to confirm database creation.
Password (hidden)
Connected

sql> quit
Connection closed

By default remote creation of databases from a TCP connection or a web
interface is not allowed. It's not recommended to enable remote creation
of databases due to security reasons. User who creates a new database
becomes its administrator and therefore gets the same access to your JVM
as H2 has and the same access to your operating system as Java and your
system account allows. It's recommended to create all databases locally
using an embedded URL, local H2 Console, or the Shell tool.

If you really need to allow remote database creation, you can pass -
ifNotExists parameter to TCP, PG, or Web servers (but not to the Console
tool). Its combination with -tcpAllowOthers, -pgAllowOthers, or -
webAllowOthers effectively creates a remote security hole in your system,
if you use it, always guard your ports with a firewall or some other solution
and use such combination of settings only in trusted networks.

H2 Servlet also supports such option. When you use it always protect the
servlet with security constraints, see Using the H2 Console Servlet for
example; don't forget to uncomment and adjust security configuration for
your needs.

Using the Server
H2 currently supports three server: a web server (for the H2 Console), a
TCP server (for client/server connections) and an PG server (for
PostgreSQL clients). Please note that only the web server supports

40 of 436

browser connections. The servers can be started in different ways, one is
using the Server tool. Starting the server doesn't open a database -
databases are opened as soon as a client connects.

Starting the Server Tool from Command Line

To start the Server tool from the command line with the default settings,
run:

java -cp h2*.jar org.h2.tools.Server

This will start the tool with the default options. To get the list of options
and default values, run:

java -cp h2*.jar org.h2.tools.Server -?

There are options available to use other ports, and start or not start parts.

Connecting to the TCP Server

To remotely connect to a database using the TCP server, use the following
driver and database URL:

• JDBC driver class: org.h2.Driver
• Database URL: jdbc:h2:tcp://localhost/~/test

For details about the database URL, see also in Features. Please note that
you can't connection with a web browser to this URL. You can only
connect using a H2 client (over JDBC).

Starting the TCP Server within an Application

Servers can also be started and stopped from within an application.
Sample code:

import org.h2.tools.Server;
...
// start the TCP Server
Server server = Server.createTcpServer(args).start();
...
// stop the TCP Server
server.stop();

41 of 436

Stopping a TCP Server from Another Process

The TCP server can be stopped from another process. To stop the server
from the command line, run:

java org.h2.tools.Server -tcpShutdown tcp://localhost:9092 -tcpPassword
password

To stop the server from a user application, use the following code:

org.h2.tools.Server.shutdownTcpServer("tcp://localhost:9092",
"password", false, false);

This function will only stop the TCP server. If other server were started in
the same process, they will continue to run. To avoid recovery when the
databases are opened the next time, all connections to the databases
should be closed before calling this method. To stop a remote server,
remote connections must be enabled on the server. Shutting down a TCP
server is protected using the option -tcpPassword (the same password
must be used to start and stop the TCP server).

Using Hibernate
This database supports Hibernate version 3.1 and newer. You can use the
HSQLDB Dialect, or the native H2 Dialect.

When using Hibernate, try to use the H2Dialect if possible. When using the
H2Dialect, compatibility modes such as MODE=MySQL are not supported.
When using such a compatibility mode, use the Hibernate dialect for the
corresponding database instead of the H2Dialect; but please note H2 does
not support all features of all databases.

Using TopLink and Glassfish
To use H2 with Glassfish (or Sun AS), set the Datasource Classname to
org.h2.jdbcx.JdbcDataSource. You can set this in the GUI at Application
Server - Resources - JDBC - Connection Pools, or by editing the file sun-
resources.xml: at element jdbc-connection-pool, set the attribute
datasource-classname to org.h2.jdbcx.JdbcDataSource.

The H2 database is compatible with HSQLDB and PostgreSQL. To take
advantage of H2 specific features, use the H2Platform. The source code of
this platform is included in H2 at

42 of 436

src/tools/oracle/toplink/essentials/platform/database/DatabasePlatform.jav
a.txt. You will need to copy this file to your application, and rename it
to .java. To enable it, change the following setting in persistence.xml:

<property
 name="toplink.target-database"
 value="oracle.toplink.essentials.platform.database.H2Platform"/>

In old versions of Glassfish, the property name is
toplink.platform.class.name.

To use H2 within Glassfish, copy the h2*.jar to the directory
glassfish/glassfish/lib.

Using EclipseLink
To use H2 in EclipseLink, use the platform class
org.eclipse.persistence.platform.database.H2Platform. If this platform is
not available in your version of EclipseLink, you can use the
OraclePlatform instead in many case. See also H2Platform.

Using Apache ActiveMQ
When using H2 as the backend database for Apache ActiveMQ, please use
the TransactDatabaseLocker instead of the default locking mechanism.
Otherwise the database file will grow without bounds. The problem is that
the default locking mechanism uses an uncommitted UPDATE transaction,
which keeps the transaction log from shrinking (causes the database file
to grow). Instead of using an UPDATE statement, the
TransactDatabaseLocker uses SELECT ... FOR UPDATE which is not
problematic. To use it, change the ApacheMQ configuration element
<jdbcPersistenceAdapter> element, property
databaseLocker="org.apache.activemq.store.jdbc.adapter.TransactDatab
aseLocker". However, using the MVCC mode will again result in the same
problem. Therefore, please do not use the MVCC mode in this case.
Another (more dangerous) solution is to set useDatabaseLock to false.

Using H2 within NetBeans
There is a known issue when using the Netbeans SQL Execution Window:
before executing a query, another query in the form SELECT COUNT(*)
FROM <query> is run. This is a problem for queries that modify state,

43 of 436

https://wiki.eclipse.org/EclipseLink/Development/Incubator/Extensions/H2Platform

such as SELECT NEXT VALUE FOR SEQ. In this case, two sequence values
are allocated instead of just one.

Using H2 with jOOQ
jOOQ adds a thin layer on top of JDBC, allowing for type-safe SQL
construction, including advanced SQL, stored procedures and advanced
data types. jOOQ takes your database schema as a base for code
generation. If this is your example schema:

CREATE TABLE USER (ID INT, NAME VARCHAR(50));

then run the jOOQ code generator on the command line using this
command:

java -cp jooq.jar;jooq-meta.jar;jooq-codegen.jar;h2-1.4.199.jar;.
org.jooq.util.GenerationTool /codegen.xml

...where codegen.xml is on the classpath and contains this information

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-
3.11.0.xsd">
 <jdbc>
 <driver>org.h2.Driver</driver>
 <url>jdbc:h2:~/test</url>
 <user>sa</user>
 <password></password>
 </jdbc>
 <generator>
 <database>
 <includes>.*</includes>
 <excludes></excludes>
 <inputSchema>PUBLIC</inputSchema>
 </database>
 <target>
 <packageName>org.jooq.h2.generated</packageName>
 <directory>./src</directory>
 </target>
 </generator>
</configuration>

Using the generated source, you can query the database as follows:

44 of 436

DSLContext dsl = DSL.using(connection);
Result<UserRecord> result =
dsl.selectFrom(USER)
 .where(NAME.like("Johnny%"))
 .orderBy(ID)
 .fetch();

See more details on jOOQ Homepage and in the jOOQ Tutorial

Using Databases in Web Applications
There are multiple ways to access a database from within web
applications. Here are some examples if you use Tomcat or JBoss.

Embedded Mode

The (currently) simplest solution is to use the database in the embedded
mode, that means open a connection in your application when it starts (a
good solution is using a Servlet Listener, see below), or when a session
starts. A database can be accessed from multiple sessions and
applications at the same time, as long as they run in the same process.
Most Servlet Containers (for example Tomcat) are just using one process,
so this is not a problem (unless you run Tomcat in clustered mode).
Tomcat uses multiple threads and multiple classloaders. If multiple
applications access the same database at the same time, you need to put
the database jar in the shared/lib or server/lib directory. It is a good idea
to open the database when the web application starts, and close it when
the web application stops. If using multiple applications, only one (any) of
them needs to do that. In the application, an idea is to use one connection
per Session, or even one connection per request (action). Those
connections should be closed after use if possible (but it's not that bad if
they don't get closed).

Server Mode

The server mode is similar, but it allows you to run the server in another
process.

Using a Servlet Listener to Start and Stop a Database

Add the h2*.jar file to your web application, and add the following snippet
to your web.xml file (between the context-param and the filter section):

45 of 436

https://www.jooq.org/tutorial
https://www.jooq.org/

<listener>
 <listener-class>org.h2.server.web.DbStarter</listener-class>
</listener>

If your servlet container is already Servlet 5-compatible, use the following
snippet instead:

<listener>
 <listener-class>org.h2.server.web.JakartaDbStarter</listener-class>
</listener>

For details on how to access the database, see the file DbStarter.java. By
default this tool opens an embedded connection using the database URL
jdbc:h2:~/test, user name sa, and password sa. If you want to use this
connection within your servlet, you can access as follows:

Connection conn = getServletContext().getAttribute("connection");

DbStarter can also start the TCP server, however this is disabled by
default. To enable it, use the parameter db.tcpServer in the file web.xml.
Here is the complete list of options. These options need to be placed
between the description tag and the listener / filter tags:

<context-param>
 <param-name>db.url</param-name>
 <param-value>jdbc:h2:~/test</param-value>
</context-param>
<context-param>
 <param-name>db.user</param-name>
 <param-value>sa</param-value>
</context-param>
<context-param>
 <param-name>db.password</param-name>
 <param-value>sa</param-value>
</context-param>
<context-param>
 <param-name>db.tcpServer</param-name>
 <param-value>-tcpAllowOthers</param-value>
</context-param>

When the web application is stopped, the database connection will be
closed automatically. If the TCP server is started within the DbStarter, it
will also be stopped automatically.

46 of 436

Using the H2 Console Servlet

The H2 Console is a standalone application and includes its own web
server, but it can be used as a servlet as well. To do that, include the
h2*.jar file in your application, and add the following configuration to your
web.xml:

<servlet>
 <servlet-name>H2Console</servlet-name>
 <servlet-class>org.h2.server.web.WebServlet</servlet-class>
 <!--
 <init-param>
 <param-name>webAllowOthers</param-name>
 <param-value></param-value>
 </init-param>
 <init-param>
 <param-name>trace</param-name>
 <param-value></param-value>
 </init-param>
 -->
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>H2Console</servlet-name>
 <url-pattern>/console/*</url-pattern>
</servlet-mapping>
<!--
<security-role>
 <role-name>admin</role-name>
</security-role>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>H2 Console</web-resource-name>
 <url-pattern>/console/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>
-->

For details, see also src/tools/WEB-INF/web.xml.

47 of 436

If your application is already Servlet 5-compatible, use the servlet class
org.h2.server.web.JakartaWebServlet instead.

To create a web application with just the H2 Console, run the following
command:

build warConsole

CSV (Comma Separated Values) Support
The CSV file support can be used inside the database using the functions
CSVREAD and CSVWRITE, or it can be used outside the database as a
standalone tool.

Reading a CSV File from Within a Database

A CSV file can be read using the function CSVREAD. Example:

SELECT * FROM CSVREAD('test.csv');

Please note for performance reason, CSVREAD should not be used inside a
join. Instead, import the data first (possibly into a temporary table), create
the required indexes if necessary, and then query this table.

Importing Data from a CSV File

A fast way to load or import data (sometimes called 'bulk load') from a
CSV file is to combine table creation with import. Optionally, the column
names and data types can be set when creating the table. Another option
is to use INSERT INTO ... SELECT.

CREATE TABLE TEST AS SELECT * FROM CSVREAD('test.csv');
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255))
 AS SELECT * FROM CSVREAD('test.csv');

Writing a CSV File from Within a Database

The built-in function CSVWRITE can be used to create a CSV file from a
query. Example:

CREATE TABLE TEST(ID INT, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello'), (2, 'World');
CALL CSVWRITE('test.csv', 'SELECT * FROM TEST');

48 of 436

Writing a CSV File from a Java Application

The Csv tool can be used in a Java application even when not using a
database at all. Example:

import java.sql.*;
import org.h2.tools.Csv;
import org.h2.tools.SimpleResultSet;
public class TestCsv {
 public static void main(String[] args) throws Exception {
 SimpleResultSet rs = new SimpleResultSet();
 rs.addColumn("NAME", Types.VARCHAR, 255, 0);
 rs.addColumn("EMAIL", Types.VARCHAR, 255, 0);
 rs.addRow("Bob Meier", "bob.meier@abcde.abc");
 rs.addRow("John Jones", "john.jones@abcde.abc");
 new Csv().write("data/test.csv", rs, null);
 }
}

Reading a CSV File from a Java Application

It is possible to read a CSV file without opening a database. Example:

import java.sql.*;
import org.h2.tools.Csv;
public class TestCsv {
 public static void main(String[] args) throws Exception {
 ResultSet rs = new Csv().read("data/test.csv", null, null);
 ResultSetMetaData meta = rs.getMetaData();
 while (rs.next()) {
 for (int i = 0; i < meta.getColumnCount(); i++) {
 System.out.println(
 meta.getColumnLabel(i + 1) + ": " +
 rs.getString(i + 1));
 }
 System.out.println();
 }
 rs.close();
 }
}

49 of 436

Upgrade, Backup, and Restore

Database Upgrade

The recommended way to upgrade from one version of the database
engine to the next version is to create a backup of the database (in the
form of a SQL script) using the old engine, and then execute the SQL
script using the new engine.

Backup using the Script Tool

The recommended way to backup a database is to create a compressed
SQL script file. This will result in a small, human readable, and database
version independent backup. Creating the script will also verify the
checksums of the database file. The Script tool is ran as follows:

java org.h2.tools.Script -url jdbc:h2:~/test -user sa -script test.zip -options
compression zip

It is also possible to use the SQL command SCRIPT to create the backup of
the database. For more information about the options, see the SQL
command SCRIPT. The backup can be done remotely, however the file will
be created on the server side. The built in FTP server could be used to
retrieve the file from the server.

Restore from a Script

To restore a database from a SQL script file, you can use the RunScript
tool:

java org.h2.tools.RunScript -url jdbc:h2:~/test -user sa -script test.zip -
options compression zip

For more information about the options, see the SQL command
RUNSCRIPT. The restore can be done remotely, however the file needs to
be on the server side. The built in FTP server could be used to copy the file
to the server. It is also possible to use the SQL command RUNSCRIPT to
execute a SQL script. SQL script files may contain references to other
script files, in the form of RUNSCRIPT commands. However, when using
the server mode, the references script files need to be available on the
server side.

50 of 436

If the script was generated by H2 1.4.200 or an older version, add
VARIABLE_BINARY option to import it into more recent version.

java org.h2.tools.RunScript -url jdbc:h2:~/test -user sa -script test.zip -
options compression zip variable_binary

Online Backup

The BACKUP SQL statement and the Backup tool both create a zip file with
the database file. However, the contents of this file are not human
readable.

The resulting backup is transactionally consistent, meaning the
consistency and atomicity rules apply.

BACKUP TO 'backup.zip'

The Backup tool (org.h2.tools.Backup) can not be used to create a online
backup; the database must not be in use while running this program.

Creating a backup by copying the database files while the database is
running is not supported, except if the file systems support creating
snapshots. With other file systems, it can't be guaranteed that the data is
copied in the right order.

Command Line Tools
This database comes with a number of command line tools. To get more
information about a tool, start it with the parameter '-?', for example:

java -cp h2*.jar org.h2.tools.Backup -?

The command line tools are:

• Backup creates a backup of a database.
• ChangeFileEncryption allows changing the file encryption password

or algorithm of a database.
• Console starts the browser based H2 Console.
• ConvertTraceFile converts a .trace.db file to a Java application and

SQL script.
• CreateCluster creates a cluster from a standalone database.
• DeleteDbFiles deletes all files belonging to a database.
• Recover helps recovering a corrupted database.

51 of 436

• Restore restores a backup of a database.
• RunScript runs a SQL script against a database.
• Script allows converting a database to a SQL script for backup or

migration.
• Server is used in the server mode to start a H2 server.
• Shell is a command line database tool.

The tools can also be called from an application by calling the main or
another public method. For details, see the Javadoc documentation.

The Shell Tool
The Shell tool is a simple interactive command line tool. To start it, type:

java -cp h2*.jar org.h2.tools.Shell

You will be asked for a database URL, JDBC driver, user name, and
password. The connection setting can also be set as command line
parameters. After connecting, you will get the list of options. The built-in
commands don't need to end with a semicolon, but SQL statements are
only executed if the line ends with a semicolon ;. This allows to enter
multi-line statements:

sql> select * from test
...> where id = 0;

By default, results are printed as a table. For results with many column,
consider using the list mode:

sql> list
Result list mode is now on
sql> select * from test;
ID : 1
NAME: Hello

ID : 2
NAME: World
(2 rows, 0 ms)

52 of 436

Using OpenOffice Base
OpenOffice.org Base supports database access over the JDBC API. To
connect to a H2 database using OpenOffice Base, you first need to add the
JDBC driver to OpenOffice. The steps to connect to a H2 database are:

• Start OpenOffice Writer, go to [Tools], [Options]
• Make sure you have selected a Java runtime environment in

OpenOffice.org / Java
• Click [Class Path...], [Add Archive...]
• Select your h2 jar file (location is up to you, could be wherever you

choose)
• Click [OK] (as much as needed), stop OpenOffice (including the

Quickstarter)
• Start OpenOffice Base
• Connect to an existing database; select [JDBC]; [Next]
• Example datasource URL: jdbc:h2:~/test
• JDBC driver class: org.h2.Driver

Now you can access the database stored in the current users home
directory.

To use H2 in NeoOffice (OpenOffice without X11):

• In NeoOffice, go to [NeoOffice], [Preferences]
• Look for the page under [NeoOffice], [Java]
• Click [Class Path], [Add Archive...]
• Select your h2 jar file (location is up to you, could be wherever you

choose)
• Click [OK] (as much as needed), restart NeoOffice.

Now, when creating a new database using the "Database Wizard" :

• Click [File], [New], [Database].
• Select [Connect to existing database] and the select [JDBC]. Click

next.
• Example datasource URL: jdbc:h2:~/test
• JDBC driver class: org.h2.Driver

Another solution to use H2 in NeoOffice is:

• Package the h2 jar within an extension package
• Install it as a Java extension in NeoOffice

53 of 436

This can be done by create it using the NetBeans OpenOffice plugin. See
also Extensions Development.

Java Web Start / JNLP
When using Java Web Start / JNLP (Java Network Launch Protocol),
permissions tags must be set in the .jnlp file, and the application .jar file
must be signed. Otherwise, when trying to write to the file system, the
following exception will occur: java.security.AccessControlException:
access denied (java.io.FilePermission ... read). Example permission tags:

<security>
 <all-permissions/>
</security>

Using a Connection Pool
For H2, opening a connection is fast if the database is already open. Still,
using a connection pool improves performance if you open and close
connections a lot. A simple connection pool is included in H2. It is based
on the Mini Connection Pool Manager from Christian d'Heureuse. There are
other, more complex, open source connection pools available, for example
the Apache Commons DBCP. For H2, it is about twice as faster to get a
connection from the built-in connection pool than to get one using
DriverManager.getConnection().The build-in connection pool is used as
follows:

import java.sql.*;
import org.h2.jdbcx.JdbcConnectionPool;
public class Test {
 public static void main(String[] args) throws Exception {
 JdbcConnectionPool cp = JdbcConnectionPool.create(
 "jdbc:h2:~/test", "sa", "sa");
 for (int i = 0; i < args.length; i++) {
 Connection conn = cp.getConnection();
 conn.createStatement().execute(args[i]);
 conn.close();
 }
 cp.dispose();
 }
}

54 of 436

https://commons.apache.org/proper/commons-dbcp/
http://www.source-code.biz/miniconnectionpoolmanager/
https://wiki.openoffice.org/wiki/Extensions_development_java

Fulltext Search
H2 includes two fulltext search implementations. One is using Apache
Lucene, and the other (the native implementation) stores the index data
in special tables in the database.

Using the Native Fulltext Search

To initialize, call:

CREATE ALIAS IF NOT EXISTS FT_INIT FOR "org.h2.fulltext.FullText.init";
CALL FT_INIT();

You need to initialize it in each database where you want to use it.
Afterwards, you can create a fulltext index for a table using:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello World');
CALL FT_CREATE_INDEX('PUBLIC', 'TEST', NULL);

PUBLIC is the schema name, TEST is the table name. The list of column
names (comma separated) is optional, in this case all columns are
indexed. The index is updated in realtime. To search the index, use the
following query:

SELECT * FROM FT_SEARCH('Hello', 0, 0);

This will produce a result set that contains the query needed to retrieve
the data:

QUERY: "PUBLIC"."TEST" WHERE "ID"=1

To drop an index on a table:

CALL FT_DROP_INDEX('PUBLIC', 'TEST');

To get the raw data, use FT_SEARCH_DATA('Hello', 0, 0);. The result
contains the columns SCHEMA (the schema name), TABLE (the table
name), COLUMNS (an array of column names), and KEYS (an array of
objects). To join a table, use a join as in: SELECT T.* FROM
FT_SEARCH_DATA('Hello', 0, 0) FT, TEST T WHERE FT."TABLE"='TEST' AND
T.ID=FT."KEYS"[1];

You can also call the index from within a Java application:

55 of 436

org.h2.fulltext.FullText.search(conn, text, limit, offset);
org.h2.fulltext.FullText.searchData(conn, text, limit, offset);

Using the Apache Lucene Fulltext Search

To use the Apache Lucene full text search, you need the Lucene library in
the classpath. Apache Lucene 9.7.0 or binary compatible version is
required. How to do that depends on the application; if you use the H2
Console, you can add the Lucene jar file to the environment variables
H2DRIVERS or CLASSPATH. To initialize the Lucene fulltext search in a
database, call:

CREATE ALIAS IF NOT EXISTS FTL_INIT FOR
"org.h2.fulltext.FullTextLucene.init";
CALL FTL_INIT();

You need to initialize it in each database where you want to use it.
Afterwards, you can create a full text index for a table using:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello World');
CALL FTL_CREATE_INDEX('PUBLIC', 'TEST', NULL);

PUBLIC is the schema name, TEST is the table name. The list of column
names (comma separated) is optional, in this case all columns are
indexed. The index is updated in realtime. To search the index, use the
following query:

SELECT * FROM FTL_SEARCH('Hello', 0, 0);

This will produce a result set that contains the query needed to retrieve
the data:

QUERY: "PUBLIC"."TEST" WHERE "ID"=1

To drop an index on a table (be warned that this will re-index all of the
full-text indices for the entire database):

CALL FTL_DROP_INDEX('PUBLIC', 'TEST');

To get the raw data, use FTL_SEARCH_DATA('Hello', 0, 0);. The result
contains the columns SCHEMA (the schema name), TABLE (the table

56 of 436

name), COLUMNS (an array of column names), and KEYS (an array of
objects). To join a table, use a join as in: SELECT T.* FROM
FTL_SEARCH_DATA('Hello', 0, 0) FT, TEST T WHERE FT."TABLE"='TEST'
AND T.ID=FT."KEYS"[1];

You can also call the index from within a Java application:

org.h2.fulltext.FullTextLucene.search(conn, text, limit, offset);
org.h2.fulltext.FullTextLucene.searchData(conn, text, limit, offset);

The Lucene fulltext search supports searching in specific column only.
Column names must be uppercase (except if the original columns are
double quoted). For column names starting with an underscore (_),
another underscore needs to be added. Example:

CREATE ALIAS IF NOT EXISTS FTL_INIT FOR
"org.h2.fulltext.FullTextLucene.init";
CALL FTL_INIT();
DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, FIRST_NAME VARCHAR,
LAST_NAME VARCHAR);
CALL FTL_CREATE_INDEX('PUBLIC', 'TEST', NULL);
INSERT INTO TEST VALUES(1, 'John', 'Wayne');
INSERT INTO TEST VALUES(2, 'Elton', 'John');
SELECT * FROM FTL_SEARCH_DATA('John', 0, 0);
SELECT * FROM FTL_SEARCH_DATA('LAST_NAME:John', 0, 0);
CALL FTL_DROP_ALL();

User-Defined Variables
This database supports user-defined variables. Variables start with @ and
can be used wherever expressions or parameters are allowed. Variables
are not persisted and session scoped, that means only visible from within
the session in which they are defined. A value is usually assigned using
the SET command:

SET @USER = 'Joe';

The value can also be changed using the SET() method. This is useful in
queries:

SET @TOTAL = NULL;
SELECT X, SET(@TOTAL, COALESCE(@TOTAL, 1.) * X) F FROM

57 of 436

SYSTEM_RANGE(1, 50);

Variables that are not set evaluate to NULL. The data type of a user-
defined variable is the data type of the value assigned to it, that means it
is not necessary (or possible) to declare variable names before using
them. There are no restrictions on the assigned values; large objects
(LOBs) are supported as well. Rolling back a transaction does not affect
the value of a user-defined variable.

Date and Time
Date, time and timestamp values support standard literals:

VALUES (
 DATE '2008-01-01',
 TIME '12:00:00',
 TIME WITH TIME ZONE '12:00:00+01:00',
 TIMESTAMP '2008-01-01 12:00:00',
 TIMESTAMP WITH TIME ZONE '2008-01-01 12:00:00+01:00'
);

ISO 8601-style datetime formats with T instead of space between date
and time parts are also supported.

TIME and TIMESTAMP values are preserved without time zone information
as local time. That means if you store the value '2000-01-01 12:00:00' in
one time zone, then change time zone of the session you will also get
'2000-01-01 12:00:00', the value will not be adjusted to the new time
zone, therefore its absolute value in UTC may be different.

TIME WITH TIME ZONE and TIMESTAMP WITH TIME ZONE values preserve
the specified time zone offset and if you store the value '2008-01-01
12:00:00+01:00' it also remains the same even if you change time zone of
the session, and because it has a time zone offset its absolute value in
UTC will be the same. TIMESTAMP WITH TIME ZONE values may be also
specified with time zone name like '2008-01-01 12:00:00 Europe/Berlin'. It
that case this name will be converted into time zone offset. Names of time
zones are not stored.

58 of 436

Using Spring

Using the TCP Server

Use the following configuration to start and stop the H2 TCP server using
the Spring Framework:

<bean id = "org.h2.tools.Server"
 class="org.h2.tools.Server"
 factory-method="createTcpServer"
 init-method="start"
 destroy-method="stop">
 <constructor-arg value="-tcp,-tcpAllowOthers,-tcpPort,8043" />
</bean>

The destroy-method will help prevent exceptions on hot-redeployment or
when restarting the server.

OSGi
The standard H2 jar can be dropped in as a bundle in an OSGi container.
H2 implements the JDBC Service defined in OSGi Service Platform Release
4 Version 4.2 Enterprise Specification. The H2 Data Source Factory service
is registered with the following properties:
OSGI_JDBC_DRIVER_CLASS=org.h2.Driver and
OSGI_JDBC_DRIVER_NAME=H2 JDBC Driver. The
OSGI_JDBC_DRIVER_VERSION property reflects the version of the driver as
is.

The following standard configuration properties are supported:
JDBC_USER, JDBC_PASSWORD, JDBC_DESCRIPTION,
JDBC_DATASOURCE_NAME, JDBC_NETWORK_PROTOCOL, JDBC_URL,
JDBC_SERVER_NAME, JDBC_PORT_NUMBER. Any other standard property
will be rejected. Non-standard properties will be passed on to H2 in the
connection URL.

Java Management Extension (JMX)
Management over JMX is supported, but not enabled by default. To enable
JMX, append ;JMX=TRUE to the database URL when opening the database.
Various tools support JMX, one such tool is the jconsole. When opening the
jconsole, connect to the process where the database is open (when using

59 of 436

the server mode, you need to connect to the server process). Then go to
the MBeans section. Under org.h2 you will find one entry per database.
The object name of the entry is the database short name, plus the path
(each colon is replaced with an underscore character).

The following attributes and operations are supported:

• CacheSize: the cache size currently in use in KB.
• CacheSizeMax (read/write): the maximum cache size in KB.
• Exclusive: whether this database is open in exclusive mode or not.
• FileReadCount: the number of file read operations since the database

was opened.
• FileSize: the file size in KB.
• FileWriteCount: the number of file write operations since the

database was opened.
• FileWriteCountTotal: the number of file write operations since the

database was created.
• LogMode (read/write): the current transaction log mode. See SET

LOG for details.
• Mode: the compatibility mode (REGULAR if no compatibility mode is

used).
• MultiThreaded: true if multi-threaded is enabled.
• Mvcc: true if MVCC is enabled.
• ReadOnly: true if the database is read-only.
• TraceLevel (read/write): the file trace level.
• Version: the database version in use.
• listSettings: list the database settings.
• listSessions: list the open sessions, including currently executing

statement (if any) and locked tables (if any).

To enable JMX, you may need to set the system properties
com.sun.management.jmxremote and
com.sun.management.jmxremote.port as required by the JVM.

60 of 436

Features
Feature List
H2 in Use
Connection Modes
Database URL Overview
Connecting to an Embedded (Local) Database
In-Memory Databases
Database Files Encryption
Database File Locking
Opening a Database Only if it Already Exists
Closing a Database
Ignore Unknown Settings
Changing Other Settings when Opening a Connection
Custom File Access Mode
Multiple Connections
Database File Layout
Logging and Recovery
Compatibility
Auto-Reconnect
Automatic Mixed Mode
Page Size
Using the Trace Options
Using Other Logging APIs
Read Only Databases
Read Only Databases in Zip or Jar File
Generated Columns (Computed Columns) / Function Based Index
Multi-Dimensional Indexes
User-Defined Functions and Stored Procedures
Pluggable or User-Defined Tables
Triggers
Compacting a Database
Cache Settings
External Authentication (Experimental)

61 of 436

Feature List

Main Features

• Very fast database engine
• Open source
• Written in Java
• Supports standard SQL, JDBC API
• Embedded and Server mode, Clustering support
• Strong security features
• The PostgreSQL ODBC driver can be used
• Multi version concurrency

Additional Features

• Disk based or in-memory databases and tables, read-only database
support, temporary tables

• Transaction support (read uncommitted, read committed, repeatable
read, snapshot), 2-phase-commit

• Multiple connections, row-level locking
• Cost based optimizer, using a genetic algorithm for complex queries,

zero-administration
• Scrollable and updatable result set support, large result set, external

result sorting, functions can return a result set
• Encrypted database (AES), SHA-256 password encryption, encryption

functions, SSL

SQL Support

• Support for multiple schemas, information schema
• Referential integrity / foreign key constraints with cascade, check

constraints
• Inner and outer joins, subqueries, read only views and inline views
• Triggers and Java functions / stored procedures
• Many built-in functions, including XML and lossless data compression
• Wide range of data types including large objects (BLOB/CLOB) and

arrays
• Sequences and identity columns, generated columns (can be used

for function based indexes)
• ORDER BY, GROUP BY, HAVING, UNION, OFFSET / FETCH (including

PERCENT and WITH TIES), LIMIT, TOP, DISTINCT / DISTINCT ON (...)

62 of 436

• Window functions
• Collation support, including support for the ICU4J library
• Support for users and roles
• Compatibility modes for IBM DB2, Apache Derby, HSQLDB, MS SQL

Server, MySQL, Oracle, and PostgreSQL.

Security Features

• Includes a solution for the SQL injection problem
• User password authentication uses SHA-256 and salt
• For server mode connections, user passwords are never transmitted

in plain text over the network (even when using insecure
connections; this only applies to the TCP server and not to the H2
Console however; it also doesn't apply if you set the password in the
database URL)

• All database files (including script files that can be used to backup
data) can be encrypted using the AES-128 encryption algorithm

• The remote JDBC driver supports TCP/IP connections over TLS
• The built-in web server supports connections over TLS
• Passwords can be sent to the database using char arrays instead of

Strings

Other Features and Tools

• Small footprint (around 2.5 MB), low memory requirements
• Multiple index types (b-tree, tree, hash)
• Support for multi-dimensional indexes
• CSV (comma separated values) file support
• Support for linked tables, and a built-in virtual 'range' table
• Supports the EXPLAIN PLAN statement; sophisticated trace options
• Database closing can be delayed or disabled to improve the

performance
• Web-based Console application (translated to many languages) with

autocomplete
• The database can generate SQL script files
• Contains a recovery tool that can dump the contents of the database
• Support for variables (for example to calculate running totals)
• Automatic re-compilation of prepared statements
• Uses a small number of database files
• Uses a checksum for each record and log entry for data integrity

63 of 436

• Well tested (high code coverage, randomized stress tests)

H2 in Use
For a list of applications that work with or use H2, see: Links.

Connection Modes
The following connection modes are supported:

• Embedded mode (local connections using JDBC)
• Server mode (remote connections using JDBC or ODBC over TCP/IP)
• Mixed mode (local and remote connections at the same time)

Embedded Mode

In embedded mode, an application opens a database from within the
same JVM using JDBC. This is the fastest and easiest connection mode.
The disadvantage is that a database may only be open in one virtual
machine (and class loader) at any time. As in all modes, both persistent
and in-memory databases are supported. There is no limit on the number
of database open concurrently, or on the number of open connections.

In embedded mode I/O operations can be performed by application's
threads that execute a SQL command. The application may not interrupt
these threads, it can lead to database corruption, because JVM closes I/O
handle during thread interruption. Consider other ways to control
execution of your application. When interrupts are possible the async: file
system can be used as a workaround, but full safety is not guaranteed. It's
recommended to use the client-server model instead, the client side may
interrupt own threads.

64 of 436

https://h2database.com/html/links.html

Server Mode

When using the server mode (sometimes called remote mode or
client/server mode), an application opens a database remotely using the
JDBC or ODBC API. A server needs to be started within the same or
another virtual machine, or on another computer. Many applications can
connect to the same database at the same time, by connecting to this
server. Internally, the server process opens the database(s) in embedded
mode.

The server mode is slower than the embedded mode, because all data is
transferred over TCP/IP. As in all modes, both persistent and in-memory
databases are supported. There is no limit on the number of database
open concurrently per server, or on the number of open connections.

Mixed Mode

The mixed mode is a combination of the embedded and the server mode.
The first application that connects to a database does that in embedded
mode, but also starts a server so that other applications (running in
different processes or virtual machines) can concurrently access the same
data. The local connections are as fast as if the database is used in just
the embedded mode, while the remote connections are a bit slower.

The server can be started and stopped from within the application (using
the server API), or automatically (automatic mixed mode). When using the
automatic mixed mode, all clients that want to connect to the database
(no matter if it's an local or remote connection) can do so using the exact
same database URL.

65 of 436

Database URL Overview
This database supports multiple connection modes and connection
settings. This is achieved using different database URLs. Settings in the
URLs are not case sensitive.

Topic URL Format and Examples

Embedded (local)
connection

jdbc:h2:[file:][<path>]<databaseName>
jdbc:h2:~/test
jdbc:h2:file:/data/sample
jdbc:h2:file:C:/data/sample (Windows only)

In-memory (private) jdbc:h2:mem:

In-memory (named)
jdbc:h2:mem:<databaseName>
jdbc:h2:mem:test_mem

Server mode (remote
connections)
using TCP/IP

jdbc:h2:tcp://<server>[:<port>]/
[<path>]<databaseName>
jdbc:h2:tcp://localhost/~/test
jdbc:h2:tcp://dbserv:8084/~/sample
jdbc:h2:tcp://localhost/mem:test

Server mode (remote
connections)
using TLS

jdbc:h2:ssl://<server>[:<port>]/
[<path>]<databaseName>
jdbc:h2:ssl://localhost:8085/~/sample;

Using encrypted files
jdbc:h2:<url>;CIPHER=AES
jdbc:h2:ssl://localhost/~/test;CIPHER=AES
jdbc:h2:file:~/secure;CIPHER=AES

File locking methods jdbc:h2:<url>;FILE_LOCK={FILE|SOCKET|FS|
NO}
jdbc:h2:file:~/private;CIPHER=AES;FILE_LOCK

66 of 436

=SOCKET

Only open if it already
exists

jdbc:h2:<url>;IFEXISTS=TRUE
jdbc:h2:file:~/sample;IFEXISTS=TRUE

Don't close the database
when the VM exits

jdbc:h2:<url>;DB_CLOSE_ON_EXIT=FALSE

Execute SQL on
connection

jdbc:h2:<url>;INIT=RUNSCRIPT FROM
'~/create.sql'
jdbc:h2:file:~/sample;INIT=RUNSCRIPT FROM
'~/create.sql'\;RUNSCRIPT FROM
'~/populate.sql'

User name and/or
password

jdbc:h2:<url>[;USER=<username>]
[;PASSWORD=<value>]
jdbc:h2:file:~/sample;USER=sa;PASSWORD=1
23

Debug trace settings
jdbc:h2:<url>;TRACE_LEVEL_FILE=<level
0..3>
jdbc:h2:file:~/sample;TRACE_LEVEL_FILE=3

Ignore unknown settings
jdbc:h2:<url>;IGNORE_UNKNOWN_SETTINGS=
TRUE

Custom file access mode jdbc:h2:<url>;ACCESS_MODE_DATA=rws

Database in a zip file
jdbc:h2:zip:<zipFileName>!/
<databaseName>
jdbc:h2:zip:~/db.zip!/test

Compatibility mode
jdbc:h2:<url>;MODE=<databaseType>
jdbc:h2:~/test;MODE=MYSQL;DATABASE_TO_L
OWER=TRUE

Auto-reconnect
jdbc:h2:<url>;AUTO_RECONNECT=TRUE
jdbc:h2:tcp://localhost/~/test;AUTO_RECONNE
CT=TRUE

Automatic mixed mode
jdbc:h2:<url>;AUTO_SERVER=TRUE
jdbc:h2:~/test;AUTO_SERVER=TRUE

Page size jdbc:h2:<url>;PAGE_SIZE=512

Changing other settings

jdbc:h2:<url>;<setting>=<value>[;<setting
>=<value>...]
jdbc:h2:file:~/sample;TRACE_LEVEL_SYSTEM_
OUT=3

67 of 436

Connecting to an Embedded (Local) Database
The database URL for connecting to a local database is jdbc:h2:[file:]
[<path>]<databaseName>. The prefix file: is optional. If no or only a
relative path is used, then the current working directory is used as a
starting point. The case sensitivity of the path and database name depend
on the operating system, however it is recommended to use lowercase
letters only. The database name must be at least three characters long (a
limitation of File.createTempFile). The database name must not contain a
semicolon. To point to the user home directory, use ~/, as in:
jdbc:h2:~/test.

In-Memory Databases
For certain use cases (for example: rapid prototyping, testing, high
performance operations, read-only databases), it may not be required to
persist data, or persist changes to the data. This database supports the in-
memory mode, where the data is not persisted.

In some cases, only one connection to a in-memory database is required.
This means the database to be opened is private. In this case, the
database URL is jdbc:h2:mem: Opening two connections within the same
virtual machine means opening two different (private) databases.

Sometimes multiple connections to the same in-memory database are
required. In this case, the database URL must include a name. Example:
jdbc:h2:mem:db1. Accessing the same database using this URL only works
within the same virtual machine and class loader environment.

To access an in-memory database from another process or from another
computer, you need to start a TCP server in the same process as the in-
memory database was created. The other processes then need to access
the database over TCP/IP or TLS, using a database URL such as:
jdbc:h2:tcp://localhost/mem:db1.

By default, closing the last connection to a database closes the database.
For an in-memory database, this means the content is lost. To keep the
database open, add ;DB_CLOSE_DELAY=-1 to the database URL. To keep
the content of an in-memory database as long as the virtual machine is
alive, use jdbc:h2:mem:test;DB_CLOSE_DELAY=-1. This may create a
memory leak, when you need to remove the database, use the
SHUTDOWN command.

68 of 436

Database Files Encryption
The database files can be encrypted. Three encryption algorithms are
supported:

• "AES" - also known as Rijndael, only AES-128 is implemented.
• "XTEA" - the 32 round version.
• "FOG" - pseudo-encryption only useful for hiding data from a text

editor.

To use file encryption, you need to specify the encryption algorithm (the
'cipher') and the file password (in addition to the user password) when
connecting to the database.

Creating a New Database with File Encryption

By default, a new database is automatically created if it does not exist yet
when the embedded url is used. To create an encrypted database,
connect to it as it would already exist locally using the embedded URL.

Connecting to an Encrypted Database

The encryption algorithm is set in the database URL, and the file password
is specified in the password field, before the user password. A single space
separates the file password and the user password; the file password itself
may not contain spaces. File passwords and user passwords are case
sensitive. Here is an example to connect to a password-encrypted
database:

String url = "jdbc:h2:~/test;CIPHER=AES";
String user = "sa";
String pwds = "filepwd userpwd";
conn = DriverManager.
 getConnection(url, user, pwds);

Encrypting or Decrypting a Database

To encrypt an existing database, use the ChangeFileEncryption tool. This
tool can also decrypt an encrypted database, or change the file encryption
key. The tool is available from within the H2 Console in the tools section,
or you can run it from the command line. The following command line will
encrypt the database test in the user home directory with the file
password filepwd and the encryption algorithm AES:

69 of 436

java -cp h2*.jar org.h2.tools.ChangeFileEncryption -dir ~ -db test -cipher
AES -encrypt filepwd

Database File Locking
Whenever a database is opened, a lock file is created to signal other
processes that the database is in use. If database is closed, or if the
process that opened the database terminates, this lock file is deleted.

The following file locking methods are implemented:

• The default method is FILE and uses a watchdog thread to protect
the database file. The watchdog reads the lock file each second.

• The second method is SOCKET and opens a server socket. The socket
method does not require reading the lock file every second. The
socket method should only be used if the database files are only
accessed by one (and always the same) computer.

• The third method is FS. This will use native file locking using
FileChannel.lock.

• It is also possible to open the database without file locking; in this
case it is up to the application to protect the database files. Failing to
do so will result in a corrupted database. Using the method NO forces
the database to not create a lock file at all. Please note that this is
unsafe as another process is able to open the same database,
possibly leading to data corruption.

To open the database with a different file locking method, use the
parameter FILE_LOCK. The following code opens the database with the
'socket' locking method:

String url = "jdbc:h2:~/test;FILE_LOCK=SOCKET";

For more information about the algorithms, see Advanced / File Locking
Protocols.

Opening a Database Only if it Already Exists
By default, when an application calls DriverManager.getConnection(url, ...)
with embedded URL and the database specified in the URL does not yet
exist, a new (empty) database is created. In some situations, it is better to
restrict creating new databases, and only allow to open existing
databases. To do this, add ;IFEXISTS=TRUE to the database URL. In this

70 of 436

case, if the database does not already exist, an exception is thrown when
trying to connect. The connection only succeeds when the database
already exists. The complete URL may look like this:

String url = "jdbc:h2:/data/sample;IFEXISTS=TRUE";

Closing a Database

Delayed Database Closing

Usually, a database is closed when the last connection to it is closed. In
some situations this slows down the application, for example when it is
not possible to keep at least one connection open. The automatic closing
of a database can be delayed or disabled with the SQL statement SET
DB_CLOSE_DELAY <seconds>. The parameter <seconds> specifies the
number of seconds to keep a database open after the last connection to it
was closed. The following statement will keep a database open for 10
seconds after the last connection was closed:

SET DB_CLOSE_DELAY 10

The value -1 means the database is not closed automatically. The value 0
is the default and means the database is closed when the last connection
is closed. This setting is persistent and can be set by an administrator
only. It is possible to set the value in the database URL:
jdbc:h2:~/test;DB_CLOSE_DELAY=10.

Don't Close a Database when the VM Exits

By default, a database is closed when the last connection is closed.
However, if it is never closed, a persistent database is closed when the
virtual machine exits normally, using a shutdown hook. In some situations,
the database should not be closed in this case, for example because the
database is still used at virtual machine shutdown (to store the shutdown
process in the database for example). For those cases, the automatic
closing of the database can be disabled in the database URL. The first
connection (the one that is opening the database) needs to set the option
in the database URL (it is not possible to change the setting afterwards).
The database URL to disable database closing on exit is:

String url = "jdbc:h2:~/test;DB_CLOSE_ON_EXIT=FALSE";

71 of 436

Warning: when database closing on exit is disabled, an application must
execute the SHUTDOWN command by itself in its own shutdown hook
after completion of all operations with database to avoid data loss and
should not try to establish new connections to database after that.

Execute SQL on Connection
Sometimes, particularly for in-memory databases, it is useful to be able to
execute DDL or DML commands automatically when a client connects to a
database. This functionality is enabled via the INIT property. Note that
multiple commands may be passed to INIT, but the semicolon delimiter
must be escaped, as in the example below.

String url = "jdbc:h2:mem:test;INIT=runscript from
'~/create.sql'\\;runscript from '~/init.sql'";

Please note the double backslash is only required in a Java or properties
file. In a GUI, or in an XML file, only one backslash is required:

<property name="url" value=
"jdbc:h2:mem:test;INIT=create schema if not exists test\;runscript from
'~/sql/init.sql'"
/>

Backslashes within the init script (for example within a runscript
statement, to specify the folder names in Windows) need to be escaped as
well (using a second backslash). It might be simpler to avoid backslashes
in folder names for this reason; use forward slashes instead.

Ignore Unknown Settings
Some applications (for example OpenOffice.org Base) pass some
additional parameters when connecting to the database. Why those
parameters are passed is unknown. The parameters
PREFERDOSLIKELINEENDS and IGNOREDRIVERPRIVILEGES are such
examples; they are simply ignored to improve the compatibility with
OpenOffice.org. If an application passes other parameters when
connecting to the database, usually the database throws an exception
saying the parameter is not supported. It is possible to ignored such
parameters by adding ;IGNORE_UNKNOWN_SETTINGS=TRUE to the
database URL.

72 of 436

Changing Other Settings when Opening a Connection
In addition to the settings already described, other database settings can
be passed in the database URL. Adding ;setting=value at the end of a
database URL is the same as executing the statement SET setting value
just after connecting. For a list of supported settings, see SQL Grammar or
the DbSettings javadoc.

Custom File Access Mode
Usually, the database opens the database file with the access mode rw,
meaning read-write (except for read only databases, where the mode r is
used). To open a database in read-only mode if the database file is not
read-only, use ACCESS_MODE_DATA=r. Also supported are rws and rwd.
This setting must be specified in the database URL:

String url = "jdbc:h2:~/test;ACCESS_MODE_DATA=rws";

For more information see Durability Problems. On many operating
systems the access mode rws does not guarantee that the data is written
to the disk.

Multiple Connections

Opening Multiple Databases at the Same Time

An application can open multiple databases at the same time, including
multiple connections to the same database. The number of open database
is only limited by the memory available.

Multiple Connections to the Same Database: Client/Server

If you want to access the same database at the same time from different
processes or computers, you need to use the client / server mode. In this
case, one process acts as the server, and the other processes (that could
reside on other computers as well) connect to the server via TCP/IP (or TLS
over TCP/IP for improved security).

Multithreading Support

This database is multithreading-safe. If an application is multi-threaded, it
does not need to worry about synchronizing access to the database. An
application should normally use one connection per thread. This database

73 of 436

https://h2database.com/javadoc/org/h2/engine/DbSettings.html

synchronizes access to the same connection, but other databases may not
do this. To get higher concurrency, you need to use multiple connections.

An application can use multiple threads that access the same database at
the same time. Threads that use different connections can use the
database concurrently.

Locking, Lock-Timeout, Deadlocks

Usually, SELECT statements will generate read locks. This includes
subqueries. Statements that modify data use write locks on the modified
rows. It is also possible to issue write locks without modifying data, using
the statement SELECT ... FOR UPDATE. Data definition statements may
issue exclusive locks on tables. The statements COMMIT and ROLLBACK
releases all open locks. The commands SAVEPOINT and ROLLBACK TO
SAVEPOINT don't affect locks. The locks are also released when the
autocommit mode changes, and for connections with autocommit set to
true (this is the default), locks are released after each statement. The
following statements generate locks:

Type of Lock SQL Statement

Read
SELECT * FROM TEST;
CALL SELECT MAX(ID) FROM TEST;
SCRIPT;

Write (row-level) SELECT * FROM TEST WHERE 1=0 FOR UPDATE;

Write (row-level)

INSERT INTO TEST VALUES(1, 'Hello');
INSERT INTO TEST SELECT * FROM TEST;
UPDATE TEST SET NAME='Hi';
DELETE FROM TEST;

Exclusive
ALTER TABLE TEST ...;
CREATE INDEX ... ON TEST ...;
DROP INDEX ...;

The number of seconds until a lock timeout exception is thrown can be set
separately for each connection using the SQL command SET
LOCK_TIMEOUT <milliseconds>. The initial lock timeout (that is the
timeout used for new connections) can be set using the SQL command
SET DEFAULT_LOCK_TIMEOUT <milliseconds>. The default lock timeout is
persistent.

74 of 436

Database File Layout
The following files are created for persistent databases:

File Name Description Number of Files

test.mv.db

Database file.
Contains the transaction log,
indexes, and data for all tables.
Format: <database>.mv.db

1 per database

test.newFile

Temporary file for database
compaction.
Contains the new MVStore file.
Format: <database>.newFile

0 or 1 per
database

test.tempFile

Temporary file for database
compaction.
Contains the temporary MVStore
file.
Format: <database>.tempFile

0 or 1 per
database

test.lock.db

Database lock file.
Automatically (re-)created while the
database is in use.
Format: <database>.lock.db

1 per database
(only if in use)

test.trace.db

Trace file (if the trace option is
enabled).
Contains trace information.
Format: <database>.trace.db
Renamed to
<database>.trace.db.old if too big.

0 or 1 per
database

test.123.temp.
db

Temporary file.
Contains a temporary blob or a
large result set.
Format: <database>.<id>.temp.db

1 per object

Moving and Renaming Database Files

Database name and location are not stored inside the database files.

While a database is closed, the files can be moved to another directory,
and they can be renamed as well (as long as all files of the same database
start with the same name and the respective extensions are unchanged).

As there is no platform specific data in the files, they can be moved to
other operating systems without problems.

75 of 436

Backup

When the database is closed, it is possible to backup the database files.

To backup data while the database is running, the SQL commands SCRIPT
and BACKUP can be used.

Logging and Recovery
Whenever data is modified in the database and those changes are
committed, the changes are written to the transaction log (except for in-
memory objects). The changes to the main data area itself are usually
written later on, to optimize disk access. If there is a power failure, the
main data area is not up-to-date, but because the changes are in the
transaction log, the next time the database is opened, the changes are re-
applied automatically.

Compatibility
All database engines behave a little bit different. Where possible, H2
supports the ANSI SQL standard, and tries to be compatible to other
databases. There are still a few differences however:

In MySQL text columns are case insensitive by default, while in H2 they
are case sensitive. However H2 supports case insensitive columns as well.
To create the tables with case insensitive texts, append
IGNORECASE=TRUE to the database URL (example:
jdbc:h2:~/test;IGNORECASE=TRUE).

Compatibility Modes

For certain features, this database can emulate the behavior of specific
databases. However, only a small subset of the differences between
databases are implemented in this way. Here is the list of currently
supported modes and the differences to the regular mode:

REGULAR Compatibility mode

This mode is used by default.

• Empty IN predicate is allowed.
• TOP clause in SELECT is allowed.
• OFFSET/LIMIT clauses are allowed.
• MINUS can be used instead of EXCEPT.

76 of 436

• IDENTITY can be used as a data type.
• Legacy SERIAL and BIGSERIAL data types are supported.
• AUTO_INCREMENT clause can be used instead of GENERATED

{ ALWAYS | BY DEFAULT } AS IDENTITY.

STRICT Compatibility Mode

To use the STRICT mode, use the database URL
jdbc:h2:~/test;MODE=STRICT or the SQL statement SET MODE STRICT. In
this mode some deprecated features are disabled.

If your application or library uses only the H2 or it generates different SQL
for different database systems it is recommended to use this compatibility
mode in unit tests to reduce possibility of accidental misuse of such
features. This mode cannot be used as SQL validator, however.

It is not recommended to enable this mode in production builds of
libraries, because this mode may become more restrictive in future
releases of H2 that may break your library if it will be used together with
newer version of H2.

• Empty IN predicate is disallowed.
• TOP and OFFSET/LIMIT clauses are disallowed, only OFFSET/FETCH

can be used.
• MINUS cannot be used instead of EXCEPT.
• IDENTITY cannot be used as a data type and AUTO_INCREMENT

clause cannot be specified. Use GENERATED BY DEFAULT AS
IDENTITY clause instead.

• SERIAL and BIGSERIAL data types are disallowed. Use INTEGER
GENERATED BY DEFAULT AS IDENTITY or BIGINT GENERATED BY
DEFAULT AS IDENTITY instead.

LEGACY Compatibility Mode

To use the LEGACY mode, use the database URL
jdbc:h2:~/test;MODE=LEGACY or the SQL statement SET MODE LEGACY.
In this mode some compatibility features for applications written for H2
1.X are enabled. This mode doesn't provide full compatibility with H2 1.X.

• Empty IN predicate is allowed.
• TOP clause in SELECT is allowed.
• OFFSET/LIMIT clauses are allowed.

77 of 436

• MINUS can be used instead of EXCEPT.
• IDENTITY can be used as a data type.
• MS SQL Server-style IDENTITY clause is supported.
• Legacy SERIAL and BIGSERIAL data types are supported.
• AUTO_INCREMENT clause can be used instead of GENERATED

{ ALWAYS | BY DEFAULT } AS IDENTITY.
• If a value for identity column was specified in an INSERT command

the base value of sequence generator of this column is updated if
current value of generator was smaller (larger for generators with
negative increment) than the inserted value.

• Identity columns have implicit DEFAULT ON NULL clause. It means a
NULL value may be specified for this column in INSERT command and
it will be treated as DEFAULT.

• Oracle-style CURRVAL and NEXTVAL can be used on sequences.
• TOP clause can be used in DELETE and UPDATE.
• Non-standard Oracle-style WHERE clause can be used in standard

MERGE command.
• Attempt to reference a non-unique set of columns from a referential

constraint will create an UNIQUE constraint on them automatically.
• Unsafe comparison operators between numeric and boolean values

are allowed.
• GREATEST and LEAST ignore NULL values by default.
• IDENTITY() and SCOPE_IDENTITY() are supported, but both are

implemented like SCOPE_IDENTITY()
• SYSDATE, SYSTIMESTAMP, and TODAY are supported.

DB2 Compatibility Mode

To use the IBM DB2 mode, use the database URL
jdbc:h2:~/test;MODE=DB2;DEFAULT_NULL_ORDERING=HIGH or the SQL
statement SET MODE DB2.

• For aliased columns, ResultSetMetaData.getColumnName() returns
the alias name and getTableName() returns null.

• Support the pseudo-table SYSIBM.SYSDUMMY1.
• Timestamps with dash between date and time are supported.
• Datetime value functions return the same value within a command.
• Second and third arguments of TRANSLATE() function are swapped.
• SEQUENCE.NEXTVAL and SEQUENCE.CURRVAL are supported
• LIMIT / OFFSET clauses are supported.

78 of 436

• MINUS can be used instead of EXCEPT.
• Unsafe comparison operators between numeric and boolean values

are allowed.

Derby Compatibility Mode

To use the Apache Derby mode, use the database URL
jdbc:h2:~/test;MODE=Derby;DEFAULT_NULL_ORDERING=HIGH or the SQL
statement SET MODE Derby.

• For aliased columns, ResultSetMetaData.getColumnName() returns
the alias name and getTableName() returns null.

• For unique indexes, NULL is distinct. That means only one row with
NULL in one of the columns is allowed.

• Support the pseudo-table SYSIBM.SYSDUMMY1.
• Datetime value functions return the same value within a command.

HSQLDB Compatibility Mode

To use the HSQLDB mode, use the database URL
jdbc:h2:~/test;MODE=HSQLDB;DEFAULT_NULL_ORDERING=FIRST or the
SQL statement SET MODE HSQLDB.

• Text can be concatenated using '+'.
• NULL value works like DEFAULT value is assignments to identity

columns.
• Datetime value functions return the same value within a command.
• TOP clause in SELECT is supported.
• LIMIT / OFFSET clauses are supported.
• MINUS can be used instead of EXCEPT.
• Unsafe comparison operators between numeric and boolean values

are allowed.
• SYSDATE and TODAY are supported.

MS SQL Server Compatibility Mode

To use the MS SQL Server mode, use the database URL
jdbc:h2:~/test;MODE=MSSQLServer;DATABASE_TO_UPPER=FALSE;CASE_I
NSENSITIVE_IDENTIFIERS=TRUE. Do not change value of
DATABASE_TO_LOWER and CASE_INSENSITIVE_IDENTIFIERS after creation
of database.

79 of 436

• For aliased columns, ResultSetMetaData.getColumnName() returns
the alias name and getTableName() returns null.

• Identifiers may be quoted using square brackets as in [Test].
• For unique indexes, NULL is distinct. That means only one row with

NULL in one of the columns is allowed.
• GREATEST and LEAST ignore NULL values by default.
• Text can be concatenated using '+'.
• Arguments of LOG() function are swapped.
• MONEY data type is treated like NUMERIC(19, 4) data type.

SMALLMONEY data type is treated like NUMERIC(10, 4) data type.
• IDENTITY can be used for automatic id generation on column level.
• Table hints are discarded. Example: SELECT * FROM table WITH

(NOLOCK).
• Datetime value functions return the same value within a command.
• 0x literals are parsed as binary string literals.
• TRUNCATE TABLE restarts next values of generated columns.
• TOP clause in SELECT, UPDATE, and DELETE is supported.
• Unsafe comparison operators between numeric and boolean values

are allowed.

MariaDB Compatibility Mode

To use the MariaDB mode, use the database URL
jdbc:h2:~/test;MODE=MariaDB;DATABASE_TO_LOWER=TRUE. When case-
insensitive identifiers are needed append
;CASE_INSENSITIVE_IDENTIFIERS=TRUE to URL. Do not change value of
DATABASE_TO_LOWER after creation of database.

• Creating indexes in the CREATE TABLE statement is allowed using
INDEX(..) or KEY(..). Example: create table test(id int primary key,
name varchar(255), key idx_name(name));

• When converting a floating point number to an integer, the fractional
digits are not truncated, but the value is rounded.

• ON DUPLICATE KEY UPDATE is supported in INSERT statements, due
to this feature VALUES has special non-standard meaning is some
contexts.

• INSERT IGNORE is partially supported and may be used to skip rows
with duplicate keys if ON DUPLICATE KEY UPDATE is not specified.

• REPLACE INTO is partially supported.
• Spaces are trimmed from the right side of CHAR values.

80 of 436

• REGEXP_REPLACE() uses \ for back-references.
• Datetime value functions return the same value within a command.
• 0x literals are parsed as binary string literals.
• Unrelated expressions in ORDER BY clause of DISTINCT queries are

allowed.
• Some MariaDB-specific ALTER TABLE commands are partially

supported.
• TRUNCATE TABLE restarts next values of generated columns.
• NEXT VALUE FOR returns different values when invoked multiple

times within the same row.
• If value of an identity column was manually specified, its sequence is

updated to generate values after inserted.
• NULL value works like DEFAULT value is assignments to identity

columns.
• LIMIT / OFFSET clauses are supported.
• AUTO_INCREMENT clause can be used.
• YEAR data type is treated like SMALLINT data type.
• GROUP BY clause can contain 1-based positions of expressions from

the SELECT list.
• Unsafe comparison operators between numeric and boolean values

are allowed.
• Accepts non-standard JSON_OBJECT and JSON_OBJECTAGG syntax

using comma as key/value separator.

Text comparison in MariaDB is case insensitive by default, while in H2 it is
case sensitive (as in most other databases). H2 does support case
insensitive text comparison, but it needs to be set separately, using SET
IGNORECASE TRUE. This affects comparison using =, LIKE, REGEXP.

MySQL Compatibility Mode

To use the MySQL mode, use the database URL
jdbc:h2:~/test;MODE=MySQL;DATABASE_TO_LOWER=TRUE. When case-
insensitive identifiers are needed append
;CASE_INSENSITIVE_IDENTIFIERS=TRUE to URL. Do not change value of
DATABASE_TO_LOWER after creation of database.

• Creating indexes in the CREATE TABLE statement is allowed using
INDEX(..) or KEY(..). Example: create table test(id int primary key,
name varchar(255), key idx_name(name));

81 of 436

• When converting a floating point number to an integer, the fractional
digits are not truncated, but the value is rounded.

• ON DUPLICATE KEY UPDATE is supported in INSERT statements, due
to this feature VALUES has special non-standard meaning is some
contexts.

• INSERT IGNORE is partially supported and may be used to skip rows
with duplicate keys if ON DUPLICATE KEY UPDATE is not specified.

• REPLACE INTO is partially supported.
• Spaces are trimmed from the right side of CHAR values.
• REGEXP_REPLACE() uses \ for back-references.
• Datetime value functions return the same value within a command.
• 0x literals are parsed as binary string literals.
• Unrelated expressions in ORDER BY clause of DISTINCT queries are

allowed.
• Some MySQL-specific ALTER TABLE commands are partially

supported.
• TRUNCATE TABLE restarts next values of generated columns.
• If value of an identity column was manually specified, its sequence is

updated to generate values after inserted.
• NULL value works like DEFAULT value is assignments to identity

columns.
• Referential constraints don't require an existing primary key or

unique constraint on referenced columns and create a unique
constraint automatically if such constraint doesn't exist.

• LIMIT / OFFSET clauses are supported.
• AUTO_INCREMENT clause can be used.
• YEAR data type is treated like SMALLINT data type.
• GROUP BY clause can contain 1-based positions of expressions from

the SELECT list.
• Unsafe comparison operators between numeric and boolean values

are allowed.
• Accepts non-standard JSON_OBJECT and JSON_OBJECTAGG syntax

using comma as key/value separator.

Text comparison in MySQL is case insensitive by default, while in H2 it is
case sensitive (as in most other databases). H2 does support case
insensitive text comparison, but it needs to be set separately, using SET
IGNORECASE TRUE. This affects comparison using =, LIKE, REGEXP.

82 of 436

Oracle Compatibility Mode

To use the Oracle mode, use the database URL
jdbc:h2:~/test;MODE=Oracle;DEFAULT_NULL_ORDERING=HIGH or the SQL
statement SET MODE Oracle.

• For aliased columns, ResultSetMetaData.getColumnName() returns
the alias name and getTableName() returns null.

• When using unique indexes, multiple rows with NULL in all columns
are allowed, however it is not allowed to have multiple rows with the
same values otherwise.

• Empty strings are treated like NULL values, concatenating NULL with
another value results in the other value.

• REGEXP_REPLACE() uses \ for back-references.
• RAWTOHEX() converts character strings to hexadecimal

representation of their UTF-8 encoding.
• HEXTORAW() decodes a hexadecimal character string to a binary

string.
• DATE data type is treated like TIMESTAMP(0) data type.
• Datetime value functions return the same value within a command.
• ALTER TABLE MODIFY COLUMN command is partially supported.
• SEQUENCE.NEXTVAL and SEQUENCE.CURRVAL are supported and

return values with DECIMAL/NUMERIC data type.
• Merge when matched clause may have WHERE clause.
• MINUS can be used instead of EXCEPT.
• SYSDATE and SYSTIMESTAMP are supported.

PostgreSQL Compatibility Mode

To use the PostgreSQL mode, use the database URL
jdbc:h2:~/test;MODE=PostgreSQL;DATABASE_TO_LOWER=TRUE;DEFAULT
_NULL_ORDERING=HIGH. Do not change value of DATABASE_TO_LOWER
after creation of database.

• For aliased columns, ResultSetMetaData.getColumnName() returns
the alias name and getTableName() returns null.

• When converting a floating point number to an integer, the fractional
digits are not be truncated, but the value is rounded.

• The system columns ctid and oid are supported.
• GREATEST and LEAST ignore NULL values by default.
• LOG(x) is base 10 in this mode.

83 of 436

• REGEXP_REPLACE():
• uses \ for back-references;
• does not throw an exception when the flagsString parameter

contains a 'g';
• replaces only the first matched substring in the absence of the

'g' flag in the flagsString parameter.
• LIMIT / OFFSET clauses are supported.
• Legacy SERIAL and BIGSERIAL data types are supported.
• ON CONFLICT DO NOTHING is supported in INSERT statements.
• Spaces are trimmed from the right side of CHAR values, but CHAR

values in result sets are right-padded with spaces to the declared
length.

• NUMERIC and DECIMAL/DEC data types without parameters are
treated like DECFLOAT data type.

• MONEY data type is treated like NUMERIC(19, 2) data type.
• Datetime value functions return the same value within a transaction.
• ARRAY_SLICE() out of bounds parameters are silently corrected.
• EXTRACT function with DOW field returns (0-6), Sunday is 0.
• UPDATE with FROM is partially supported.
• GROUP BY clause can contain 1-based positions of expressions from

the SELECT list.

Auto-Reconnect
The auto-reconnect feature causes the JDBC driver to reconnect to the
database if the connection is lost. The automatic re-connect only occurs
when auto-commit is enabled; if auto-commit is disabled, an exception is
thrown. To enable this mode, append ;AUTO_RECONNECT=TRUE to the
database URL.

Re-connecting will open a new session. After an automatic re-connect,
variables and local temporary tables definitions (excluding data) are re-
created. The contents of the system table
INFORMATION_SCHEMA.SESSION_STATE contains all client side state that
is re-created.

If another connection uses the database in exclusive mode (enabled using
SET EXCLUSIVE 1 or SET EXCLUSIVE 2), then this connection will try to re-
connect until the exclusive mode ends.

84 of 436

Automatic Mixed Mode
Multiple processes can access the same database without having to start
the server manually. To do that, append ;AUTO_SERVER=TRUE to the
database URL. You can use the same database URL independent of
whether the database is already open or not. This feature doesn't work
with in-memory databases. Example database URL:

jdbc:h2:/data/test;AUTO_SERVER=TRUE

Use the same URL for all connections to this database. Internally, when
using this mode, the first connection to the database is made in
embedded mode, and additionally a server is started internally (as a
daemon thread). If the database is already open in another process, the
server mode is used automatically. The IP address and port of the server
are stored in the file .lock.db, that's why in-memory databases can't be
supported.

The application that opens the first connection to the database uses the
embedded mode, which is faster than the server mode. Therefore the
main application should open the database first if possible. The first
connection automatically starts a server on a random port. This server
allows remote connections, however only to this database (to ensure that,
the client reads .lock.db file and sends the random key that is stored there
to the server). When the first connection is closed, the server stops. If
other (remote) connections are still open, one of them will then start a
server (auto-reconnect is enabled automatically).

All processes need to have access to the database files. If the first
connection is closed (the connection that started the server), open
transactions of other connections will be rolled back (this may not be a
problem if you don't disable autocommit). Explicit client/server
connections (using jdbc:h2:tcp:// or ssl://) are not supported. This mode is
not supported for in-memory databases.

Here is an example how to use this mode. Application 1 and 2 are not
necessarily started on the same computer, but they need to have access
to the database files. Application 1 and 2 are typically two different
processes (however they could run within the same process).

// Application 1:
DriverManager.getConnection("jdbc:h2:/data/test;AUTO_SERVER=TRUE");

85 of 436

// Application 2:
DriverManager.getConnection("jdbc:h2:/data/test;AUTO_SERVER=TRUE");

When using this feature, by default the server uses any free TCP port. The
port can be set manually using AUTO_SERVER_PORT=9090.

Page Size
The page size for new databases is 4 KiB (4096 bytes), unless the page
size is set explicitly in the database URL using PAGE_SIZE= when the
database is created. The page size of existing databases can not be
changed, so this property needs to be set when the database is created.
The page size of encrypted databases must be a multiple of 4096 (4096,
8192, …).

Using the Trace Options
To find problems in an application, it is sometimes good to see what
database operations where executed. This database offers the following
trace features:

• Trace to System.out and/or to a file
• Support for trace levels OFF, ERROR, INFO, DEBUG
• The maximum size of the trace file can be set
• It is possible to generate Java source code from the trace file
• Trace can be enabled at runtime by manually creating a file

Trace Options

The simplest way to enable the trace option is setting it in the database
URL. There are two settings, one for System.out
(TRACE_LEVEL_SYSTEM_OUT) tracing, and one for file tracing
(TRACE_LEVEL_FILE). The trace levels are 0 for OFF, 1 for ERROR (the
default), 2 for INFO, and 3 for DEBUG. A database URL with both levels set
to DEBUG is:

jdbc:h2:~/test;TRACE_LEVEL_FILE=3;TRACE_LEVEL_SYSTEM_OUT=3

The trace level can be changed at runtime by executing the SQL
command SET TRACE_LEVEL_SYSTEM_OUT level (for System.out tracing)
or SET TRACE_LEVEL_FILE level (for file tracing). Example:

86 of 436

SET TRACE_LEVEL_SYSTEM_OUT 3

Setting the Maximum Size of the Trace File

When using a high trace level, the trace file can get very big quickly. The
default size limit is 16 MB, if the trace file exceeds this limit, it is renamed
to .old and a new file is created. If another such file exists, it is deleted. To
limit the size to a certain number of megabytes, use SET
TRACE_MAX_FILE_SIZE mb. Example:

SET TRACE_MAX_FILE_SIZE 1

Java Code Generation

When setting the trace level to INFO or DEBUG, Java source code is
generated as well. This simplifies reproducing problems. The trace file
looks like this:

...
12-20 20:58:09 jdbc[0]:
/**/dbMeta3.getURL();
12-20 20:58:09 jdbc[0]:
/**/dbMeta3.getTables(null, "", null, new String[]{"BASE TABLE",
"VIEW"});
...

To filter the Java source code, use the ConvertTraceFile tool as follows:

java -cp h2*.jar org.h2.tools.ConvertTraceFile
 -traceFile "~/test.trace.db" -javaClass "Test"

The generated file Test.java will contain the Java source code. The
generated source code may be too large to compile (the size of a Java
method is limited). If this is the case, the source code needs to be split in
multiple methods. The password is not listed in the trace file and therefore
not included in the source code.

Using Other Logging APIs
By default, this database uses its own native 'trace' facility. This facility is
called 'trace' and not 'log' within this database to avoid confusion with the
transaction log. Trace messages can be written to both file and

87 of 436

System.out. In most cases, this is sufficient, however sometimes it is
better to use the same facility as the application, for example Log4j. To do
that, this database support SLF4J.

SLF4J is a simple facade for various logging APIs and allows to plug in the
desired implementation at deployment time. SLF4J supports
implementations such as Logback, Log4j, Jakarta Commons Logging (JCL),
Java logging, x4juli, and Simple Log.

To enable SLF4J, set the file trace level to 4 in the database URL:

jdbc:h2:~/test;TRACE_LEVEL_FILE=4

Changing the log mechanism is not possible after the database is open,
that means executing the SQL statement SET TRACE_LEVEL_FILE 4 when
the database is already open will not have the desired effect. To use
SLF4J, all required jar files need to be in the classpath. The logger name is
h2database. If it does not work, check the file <database>.trace.db for
error messages.

Read Only Databases
If the database files are read-only, then the database is read-only as well.
It is not possible to create new tables, add or modify data in this database.
Only SELECT and CALL statements are allowed. To create a read-only
database, close the database. Then, make the database file read-only.
When you open the database now, it is read-only. There are two ways an
application can find out whether database is read-only: by calling
Connection.isReadOnly() or by executing the SQL statement CALL
READONLY().

Using the Custom Access Mode r the database can also be opened in read-
only mode, even if the database file is not read only.

Read Only Databases in Zip or Jar File
To create a read-only database in a zip file, first create a regular
persistent database, and then create a backup. The database must not
have pending changes, that means you need to close all connections to
the database first. To speed up opening the read-only database and
running queries, the database should be closed using SHUTDOWN
DEFRAG. If you are using a database named test, an easy way to create a

88 of 436

https://www.slf4j.org/

zip file is using the Backup tool. You can start the tool from the command
line, or from within the H2 Console (Tools - Backup). Please note that the
database must be closed when the backup is created. Therefore, the SQL
statement BACKUP TO can not be used.

When the zip file is created, you can open the database in the zip file
using the following database URL:

jdbc:h2:zip:~/data.zip!/test

Databases in zip files are read-only. The performance for some queries will
be slower than when using a regular database, because random access in
zip files is not supported (only streaming). How much this affects the
performance depends on the queries and the data. The database is not
read in memory; therefore large databases are supported as well. The
same indexes are used as when using a regular database.

If the database is larger than a few megabytes, performance is much
better if the database file is split into multiple smaller files, because
random access in compressed files is not possible. See also the sample
application ReadOnlyDatabaseInZip.

Opening a Corrupted Database

If a database cannot be opened because the boot info (the SQL script that
is run at startup) is corrupted, then the database can be opened by
specifying a database event listener. The exceptions are logged, but
opening the database will continue.

Generated Columns (Computed Columns) / Function Based
Index
Each column is either a base column or a generated column. A generated
column is a column whose value is calculated before storing and cannot
be assigned directly. The formula is evaluated when the row is inserted,
and re-evaluated every time the row is updated. One use case is to
automatically update the last-modification time:

CREATE TABLE TEST(
 ID INT,
 NAME VARCHAR,
 LAST_MOD TIMESTAMP WITH TIME ZONE

89 of 436

https://github.com/h2database/h2database/tree/master/h2/src/test/org/h2/samples/ReadOnlyDatabaseInZip.java

 GENERATED ALWAYS AS CURRENT_TIMESTAMP
);

Function indexes are not directly supported by this database, but they can
be emulated by using generated columns. For example, if an index on the
upper-case version of a column is required, create a generated column
with the upper-case version of the original column, and create an index for
this column:

CREATE TABLE ADDRESS(
 ID INT PRIMARY KEY,
 NAME VARCHAR,
 UPPER_NAME VARCHAR GENERATED ALWAYS AS UPPER(NAME)
);
CREATE INDEX IDX_U_NAME ON ADDRESS(UPPER_NAME);

When inserting data, it is not required (and not allowed) to specify a value
for the upper-case version of the column, because the value is generated.
But you can use the column when querying the table:

INSERT INTO ADDRESS(ID, NAME) VALUES(1, 'Miller');
SELECT * FROM ADDRESS WHERE UPPER_NAME='MILLER';

Multi-Dimensional Indexes
A tool is provided to execute efficient multi-dimension (spatial) range
queries. This database does not support a specialized spatial index (R-
Tree or similar). Instead, the B-Tree index is used. For each record, the
multi-dimensional key is converted (mapped) to a single dimensional
(scalar) value. This value specifies the location on a space-filling curve.

Currently, Z-order (also called N-order or Morton-order) is used; Hilbert
curve could also be used, but the implementation is more complex. The
algorithm to convert the multi-dimensional value is called bit-interleaving.
The scalar value is indexed using a B-Tree index (usually using a
generated column).

The method can result in a drastic performance improvement over just
using an index on the first column. Depending on the data and number of
dimensions, the improvement is usually higher than factor 5. The tool
generates a SQL query from a specified multi-dimensional range. The
method used is not database dependent, and the tool can easily be ported

90 of 436

to other databases. For an example how to use the tool, please have a
look at the sample code provided in TestMultiDimension.java.

User-Defined Functions and Stored Procedures
In addition to the built-in functions, this database supports user-defined
Java functions. In this database, Java functions can be used as stored
procedures as well. A function must be declared (registered) before it can
be used. A function can be defined using source code, or as a reference to
a compiled class that is available in the classpath. By default, the function
aliases are stored in the current schema.

Referencing a Compiled Method

When referencing a method, the class must already be compiled and
included in the classpath where the database is running. Only static Java
methods are supported; both the class and the method must be public.
Example Java class:

package acme;
import java.math.*;
public class Function {
 public static boolean isPrime(int value) {
 return new BigInteger(String.valueOf(value)).isProbablePrime(100);
 }
}

The Java function must be registered in the database by calling CREATE
ALIAS ... FOR:

CREATE ALIAS IS_PRIME FOR "acme.Function.isPrime";

For a complete sample application, see
src/test/org/h2/samples/Function.java.

Declaring Functions as Source Code

When defining a function alias with source code, the database tries to
compile the source code using the Java compiler (the class
javax.tool.ToolProvider.getSystemJavaCompiler()) if it is in the classpath. If
not, javac is run as a separate process. Only the source code is stored in
the database; the class is compiled each time the database is re-opened.
Source code can be passed as dollar quoted text ($$source code$$) to

91 of 436

avoid escaping problems. If you use some third-party script processing
tool, use standard single quotes instead and don't forget to repeat each
single quotation mark twice within the source code. Example:

CREATE ALIAS NEXT_PRIME AS '
String nextPrime(String value) {
 return new BigInteger(value).nextProbablePrime().toString();
}
';

By default, the three packages java.util, java.math, java.sql are imported.
The method name (nextPrime in the example above) is ignored. Method
overloading is not supported when declaring functions as source code,
that means only one method may be declared for an alias. If different
import statements are required, they must be declared at the beginning
and separated with the tag @CODE:

CREATE ALIAS IP_ADDRESS AS '
import java.net.*;
@CODE
String ipAddress(String host) throws Exception {
 return InetAddress.getByName(host).getHostAddress();
}
';

The following template is used to create a complete Java class:

package org.h2.dynamic;
< import statements before the tag @CODE; if not set:
import java.util.*;
import java.math.*;
import java.sql.*;
>
public class <aliasName> {
 public static <sourceCode>
}

Method Overloading

Multiple methods may be bound to a SQL function if the class is already
compiled and included in the classpath. Each Java method must have a
different number of arguments. Method overloading is not supported
when declaring functions as source code.

92 of 436

Function Data Type Mapping

Functions that accept non-nullable parameters such as int will not be
called if one of those parameters is NULL. Instead, the result of the
function is NULL. If the function should be called if a parameter is NULL,
you need to use java.lang.Integer instead.

SQL types are mapped to Java classes and vice-versa as in the JDBC API.
For details, see Data Types. There are a few special cases:
java.lang.Object is mapped to OTHER (a serialized object). Therefore,
java.lang.Object can not be used to match all SQL types (matching all SQL
types is not supported). The second special case is Object[]: arrays of any
class are mapped to ARRAY. Objects of type org.h2.value.Value (the
internal value class) are passed through without conversion.

Functions That Require a Connection

If the first parameter of a Java function is a java.sql.Connection, then the
connection to database is provided. This connection does not need to be
closed before returning. When calling the method from within the SQL
statement, this connection parameter does not need to be (can not be)
specified.

Functions Throwing an Exception

If a function throws an exception, then the current statement is rolled
back and the exception is thrown to the application. SQLException are
directly re-thrown to the calling application; all other exceptions are first
converted to a SQLException.

Functions Returning a Result Set

Functions may returns a result set. Such a function can be called with the
CALL statement:

public static ResultSet query(Connection conn, String sql) throws
SQLException {
 return conn.createStatement().executeQuery(sql);
}

CREATE ALIAS QUERY FOR "org.h2.samples.Function.query";
CALL QUERY('SELECT * FROM TEST');

93 of 436

Using SimpleResultSet

A function can create a result set using the SimpleResultSet tool:

import org.h2.tools.SimpleResultSet;
...
public static ResultSet simpleResultSet() throws SQLException {
 SimpleResultSet rs = new SimpleResultSet();
 rs.addColumn("ID", Types.INTEGER, 10, 0);
 rs.addColumn("NAME", Types.VARCHAR, 255, 0);
 rs.addRow(0, "Hello");
 rs.addRow(1, "World");
 return rs;
}

CREATE ALIAS SIMPLE FOR "org.h2.samples.Function.simpleResultSet";
CALL SIMPLE();

Using a Function as a Table

A function that returns a result set can be used like a table. However, in
this case the function is called at least twice: first while parsing the
statement to collect the column names (with parameters set to null where
not known at compile time). And then, while executing the statement to
get the data (maybe multiple times if this is a join). If the function is called
just to get the column list, the URL of the connection passed to the
function is jdbc:columnlist:connection. Otherwise, the URL of the
connection is jdbc:default:connection.

public static ResultSet getMatrix(Connection conn, Integer size)
 throws SQLException {
 SimpleResultSet rs = new SimpleResultSet();
 rs.addColumn("X", Types.INTEGER, 10, 0);
 rs.addColumn("Y", Types.INTEGER, 10, 0);
 String url = conn.getMetaData().getURL();
 if (url.equals("jdbc:columnlist:connection")) {
 return rs;
 }
 for (int s = size.intValue(), x = 0; x < s; x++) {
 for (int y = 0; y < s; y++) {
 rs.addRow(x, y);
 }
 }

94 of 436

 return rs;
}

CREATE ALIAS MATRIX FOR "org.h2.samples.Function.getMatrix";
SELECT * FROM MATRIX(4) ORDER BY X, Y;

Pluggable or User-Defined Tables
For situations where you need to expose other data-sources to the SQL
engine as a table, there are "pluggable tables". For some examples, have
a look at the code in org.h2.test.db.TestTableEngines.

In order to create your own TableEngine, you need to implement the
org.h2.api.TableEngine interface e.g. something like this:

package acme;
public static class MyTableEngine implements org.h2.api.TableEngine {

 private static class MyTable extends org.h2.table.TableBase {
 .. rather a lot of code here...
 }

 public EndlessTable createTable(CreateTableData data) {
 return new EndlessTable(data);
 }
}

and then create the table from SQL like this:

CREATE TABLE TEST(ID INT, NAME VARCHAR)
 ENGINE "acme.MyTableEngine";

It is also possible to pass in parameters to the table engine, like so:

CREATE TABLE TEST(ID INT, NAME VARCHAR) ENGINE
"acme.MyTableEngine" WITH "param1", "param2";

In which case the parameters are passed down in the tableEngineParams
field of the CreateTableData object.

It is also possible to specify default table engine params on schema
creation:

CREATE SCHEMA TEST_SCHEMA WITH "param1", "param2";

95 of 436

Params from the schema are used when CREATE TABLE issued on this
schema does not have its own engine params specified.

Triggers
This database supports Java triggers that are called before or after a row
is updated, inserted or deleted. Triggers can be used for complex
consistency checks, or to update related data in the database. It is also
possible to use triggers to simulate materialized views. For a complete
sample application, see src/test/org/h2/samples/TriggerSample.java. A
Java trigger must implement the interface org.h2.api.Trigger. The trigger
class must be available in the classpath of the database engine (when
using the server mode, it must be in the classpath of the server).

import org.h2.api.Trigger;
...
public class TriggerSample implements Trigger {

 public void init(Connection conn, String schemaName, String
triggerName,
 String tableName, boolean before, int type) {
 // initialize the trigger object is necessary
 }

 public void fire(Connection conn,
 Object[] oldRow, Object[] newRow)
 throws SQLException {
 // the trigger is fired
 }

 public void close() {
 // the database is closed
 }

 public void remove() {
 // the trigger was dropped
 }

}

The connection can be used to query or update data in other tables. The
trigger then needs to be defined in the database:

96 of 436

CREATE TRIGGER INV_INS AFTER INSERT ON INVOICE
 FOR EACH ROW CALL "org.h2.samples.TriggerSample"

The trigger can be used to veto a change by throwing a SQLException.

As an alternative to implementing the Trigger interface, an application can
extend the abstract class org.h2.tools.TriggerAdapter. This will allows to
use the ResultSet interface within trigger implementations. In this case,
only the fire method needs to be implemented:

import org.h2.tools.TriggerAdapter;
...
public class TriggerSample extends TriggerAdapter {

 public void fire(Connection conn, ResultSet oldRow, ResultSet newRow)
 throws SQLException {
 // the trigger is fired
 }

}

Compacting a Database
Empty space in the database file re-used automatically. When closing the
database, the database is automatically compacted for up to 200
milliseconds by default. To compact more, use the SQL statement
SHUTDOWN COMPACT. However re-creating the database may further
reduce the database size because this will re-build the indexes. Here is a
sample function to do this:

public static void compact(String dir, String dbName,
 String user, String password) throws Exception {
 String url = "jdbc:h2:" + dir + "/" + dbName;
 String file = "data/test.sql";
 Script.execute(url, user, password, file);
 DeleteDbFiles.execute(dir, dbName, true);
 RunScript.execute(url, user, password, file, null, false);
}

See also the sample application org.h2.samples.Compact. The commands
SCRIPT / RUNSCRIPT can be used as well to create a backup of a database
and re-build the database from the script.

97 of 436

Cache Settings
The database keeps most frequently used data in the main memory. The
amount of memory used for caching can be changed using the setting
CACHE_SIZE. This setting can be set in the database connection URL
(jdbc:h2:~/test;CACHE_SIZE=131072), or it can be changed at runtime
using SET CACHE_SIZE size. The size of the cache, as represented by
CACHE_SIZE is measured in KB, with each KB being 1024 bytes. This
setting has no effect for in-memory databases. For persistent databases,
the setting is stored in the database and re-used when the database is
opened the next time. However, when opening an existing database, the
cache size is set to at most half the amount of memory available for the
virtual machine (Runtime.getRuntime().maxMemory()), even if the cache
size setting stored in the database is larger; however the setting stored in
the database is kept. Setting the cache size in the database URL or
explicitly using SET CACHE_SIZE overrides this value (even if larger than
the physical memory). To get the current used maximum cache size, use
the query SELECT * FROM INFORMATION_SCHEMA.SETTINGS WHERE
SETTING_NAME = 'info.CACHE_MAX_SIZE'

An experimental scan-resistant cache algorithm "Two Queue" (2Q) is
available. To enable it, append ;CACHE_TYPE=TQ to the database URL.
The cache might not actually improve performance. If you plan to use it,
please run your own test cases first.

Also included is an experimental second level soft reference cache. Rows
in this cache are only garbage collected on low memory. By default the
second level cache is disabled. To enable it, use the prefix SOFT_.
Example: jdbc:h2:~/test;CACHE_TYPE=SOFT_LRU. The cache might not
actually improve performance. If you plan to use it, please run your own
test cases first.

To get information about page reads and writes, and the current caching
algorithm in use, call SELECT * FROM INFORMATION_SCHEMA.SETTINGS.
The number of pages read / written is listed.

External authentication (Experimental)
External authentication allows to optionally validate user credentials
externally (JAAS,LDAP,custom classes). Is also possible to temporary

98 of 436

assign roles to externally authenticated users. This feature is
experimental and subject to change

Master user cannot be externally authenticated

To enable external authentication on a database execute statement SET
AUTHENTICATOR TRUE. This setting in persisted on the database.

To connect on a database by using external credentials client must
append AUTHREALM=H2 to the database URL. H2 is the identifier of the
authentication realm (see later).

External authentication requires to send password to the server. For this
reason is works only on local connection or remote over ssl

By default external authentication is performed through JAAS login
interface (configuration name is h2). To configure JAAS add argument -
Djava.security.auth.login.config=jaas.conf Here an example of JAAS login
configuration file content:

h2 {
 com.sun.security.auth.module.LdapLoginModule REQUIRED \
 userProvider="ldap://127.0.0.1:10389"
authIdentity="uid={USERNAME},ou=people,dc=example,dc=com" \
 debug=true useSSL=false ;
};

Is it possible to specify custom authentication settings by using JVM
argument -Dh2auth.configurationFile={urlOfH2Auth.xml}. Here an
example of h2auth.xml file content:

<h2Auth allowUserRegistration="false" createMissingRoles="true">

 <!-- realm: DUMMY authenticate users named DUMMY[0-9] with a
static password -->
 <realm name="DUMMY"

validatorClass="org.h2.security.auth.impl.FixedPasswordCredentialsValid
ator">
 <property name="userNamePattern" value="DUMMY[0-9]" />
 <property name="password" value="mock" />
 </realm>

 <!-- realm LDAPEXAMPLE:perform credentials validation on LDAP -->

99 of 436

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

 <realm name="LDAPEXAMPLE"
 validatorClass="org.h2.security.auth.impl.LdapCredentialsValidator">
 <property name="bindDnPattern" value="uid=
%u,ou=people,dc=example,dc=com" />
 <property name="host" value="127.0.0.1" />
 <property name="port" value="10389" />
 <property name="secure" value="false" />
 </realm>

 <!-- realm JAAS: perform credentials validation by using JAAS api -->
 <realm name="JAAS"
 validatorClass="org.h2.security.auth.impl.JaasCredentialsValidator">
 <property name="appName" value="H2" />
 </realm>

 <!--Assign to each user role @{REALM} -->
 <userToRolesMapper
class="org.h2.security.auth.impl.AssignRealmNameRole"/>

 <!--Assign to each user role REMOTEUSER -->
 <userToRolesMapper
class="org.h2.security.auth.impl.StaticRolesMapper">
 <property name="roles" value="REMOTEUSER"/>
 </userToRolesMapper>
</h2Auth>

Custom credentials validators must implement the interface
org.h2.api.CredentialsValidator

Custom criteria for role assignments must implement the interface
org.h2.api.UserToRoleMapper

100 of 436

Securing your H2
Introduction
Network exposed
Alias / Stored Procedures
Grants / Roles / Permissions
Encrypted storage

Introduction
H2 is __not__ designed to be run in an adversarial environment. You
should absolutely not expose your H2 server to untrusted connections.

Running H2 in embedded mode is the best choice - it is not externally
exposed.

Network exposed
When running an H2 server in TCP mode, first prize is to run with it only
listening to connections on localhost (i.e 127.0.0.1).

Second prize is running listening to restricted ports on a secured network.

If you expose H2 to the broader Internet, you can secure the connection
with SSL, but this is a rather tricky thing to get right, between JVM bugs,
certificates and choosing a decent cipher.

Alias / Stored procedures
Anything created with CREATE ALIAS can do anything the JVM can do,
which includes reading/writing from the filesystem on the machine the JVM
is running on.

Grants / Roles / Permissions
GRANT / REVOKE TODO

Encrypted storage
Encrypting your on-disk database will provide a small measure of security
to your stored data. You should not assume that this is any kind of real
security against a determined opponent however, since there are many

101 of 436

repeated data structures that will allow someone with resources and time
to extract the secret key.

Also the secret key is visible to anything that can read the memory of the
process.

102 of 436

Performance
Performance Comparison
PolePosition Benchmark
Database Performance Tuning
Using the Built-In Profiler
Application Profiling
Database Profiling
Statement Execution Plans
How Data is Stored and How Indexes Work
Fast Database Import

Performance Comparison
In many cases H2 is faster than other (open source and not open source)
database engines. Please note this is mostly a single connection
benchmark run on one computer, with many very simple operations
running against the database. This benchmark does not include very
complex queries. The embedded mode of H2 is faster than the client-
server mode because the per-statement overhead is greatly reduced.

Embedded

Test Case Unit H2 HSQLDB Derby

Simple: Init ms 1021 2510 6762

Simple: Query (random) ms 513 653 2035

Simple: Query (sequential) ms 1344 2210 7665

Simple: Update (sequential) ms 1642 3040 7034

Simple: Delete (sequential) ms 1697 2310 9981

Simple: Memory Usage MB 18 15 13

BenchA: Init ms 801 2877 6576

BenchA: Transactions ms 1369 2629 4987

BenchA: Memory Usage MB 12 15 9

BenchB: Init ms 966 2544 7161

BenchB: Transactions ms 341 2316 815

103 of 436

BenchB: Memory Usage MB 14 10 10

BenchC: Init ms 2630 3144 7420

BenchC: Transactions ms 1732 1742 2735

BenchC: Memory Usage MB 19 34 11

Executed statements # 2222032 2222032 2222032

Total time ms 14056 25975 63171

Statements per second #/s 158084 85545 35174

Client-Server

Test Case Unit H2 HSQLDB Derby PostgreSQL MySQL

Simple: Init ms 27989 48055 47142 32972 109482

Simple:
Query
(random)

ms 4821 5984 14741 4089 15140

Simple:
Query
(sequential)

ms 33656 49112 95999 35676 143536

Simple:
Update
(sequential)

ms 9878 23565 31418 26113 50676

Simple:
Delete
(sequential)

ms 13056 28584 43955 20985 64647

Simple:
Memory
Usage

MB 18 15 15 2 4

BenchA: Init ms 20993 42525 38335 27794 107723

BenchA:
Transaction
s

ms 16549 29255 28995 23113 65036

BenchA:
Memory
Usage

MB 12 18 11 1 4

BenchB: Init ms 26785 48772 39756 32369 115398

BenchB: ms 898 10046 1916 818 1794

104 of 436

Transaction
s

BenchB:
Memory
Usage

MB 16 11 12 2 5

BenchC:
Init

ms 18266 26865 39325 24547 70531

BenchC:
Transaction
s

ms 6569 7783 9412 8916 19150

BenchC:
Memory
Usage

MB 17 35 13 2 7

Executed
statements

2222032 2222032 2222032 2222032 2222032

Total time ms 179460 320546 390994 237392 763113

Statements
per second

#/s 12381 6932 5683 9360 2911

Benchmark Results and Comments

H2

Version 2.0.202 (2021-11-25) was used for the test. For most operations,
the performance of H2 is about the same as for HSQLDB. One situation
where H2 is slow is large result sets, because they are buffered to disk if
more than a certain number of records are returned. The advantage of
buffering is: there is no limit on the result set size.

HSQLDB

Version 2.5.1 was used for the test. Cached tables are used in this test
(hsqldb.default_table_type=cached), and the write delay is 1 second (SET
WRITE_DELAY 1).

Derby

Version 10.14.2.0 was used for the test. Derby is clearly the slowest
embedded database in this test. This seems to be a structural problem,
because all operations are really slow. It will be hard for the developers of
Derby to improve the performance to a reasonable level. A few problems

105 of 436

have been identified: leaving autocommit on is a problem for Derby. If it is
switched off during the whole test, the results are about 20% better for
Derby. Derby calls FileChannel.force(false), but only twice per log file (not
on each commit). Disabling this call improves performance for Derby by
about 2%. Unlike H2, Derby does not call FileDescriptor.sync() on each
checkpoint. Derby supports a testing mode (system property
derby.system.durability=test) where durability is disabled. According to
the documentation, this setting should be used for testing only, as the
database may not recover after a crash. Enabling this setting improves
performance by a factor of 2.6 (embedded mode) or 1.4 (server mode).
Even if enabled, Derby is still less than half as fast as H2 in default mode.

PostgreSQL

Version 13.4 was used for the test. The following options where changed
in postgresql.conf: fsync = off, commit_delay = 100000 (microseconds).
PostgreSQL is run in server mode. The memory usage number is incorrect,
because only the memory usage of the JDBC driver is measured.

MySQL

Version 8.0.27 was used for the test. MySQL was run with the InnoDB
backend. The setting innodb_flush_log_at_trx_commit and
sync_binlogcode> (found in the my.ini / community-mysql-server.cnf file)
was set to 0. Otherwise (and by default), MySQL is slow (around 140
statements per second in this test) because it tries to flush the data to
disk for each commit. For small transactions (when autocommit is on) this
is really slow. But many use cases use small or relatively small
transactions. Too bad this setting is not listed in the configuration wizard,
and it always overwritten when using the wizard. You need to change
those settings manually in the file my.ini / community-mysql-server.cnf,
and then restart the service. The memory usage number is incorrect,
because only the memory usage of the JDBC driver is measured.

SQLite

SQLite 3.36.0.3, configured to use WAL and with synchronous=NORMAL
was tested in a separate, less reliable run. A rough estimate is that SQLite
performs approximately 2-5x worse in the simple benchmarks, which
perform simple work in the database, resulting in a low work-per-
transaction ratio. SQLite becomes competitive as the complexity of the

106 of 436

https://sqlite.org/pragma.html#pragma_synchronous
https://sqlite.org/wal.html

database interactions increases. The results seemed to vary drastically
across machine, and more reliable results should be obtained. Benchmark
on your production hardware.

The benchmarks used include multi-threaded scenarios, and we were not
able to get the SQLite JDBC driver we used to work with them. Help with
configuring the driver for multi-threaded usage is welcome.

Firebird

Firebird 3.0 (default installation) was tested, but failed on multi-threaded
part of the test. It is likely possible to run the performance test with the
Firebird database, and any information on how to configure Firebird for
this are welcome.

Why Oracle / MS SQL Server / DB2 are Not Listed

The license of these databases does not allow to publish benchmark
results. This doesn't mean that they are fast. They are in fact quite slow,
and need a lot of memory. But you will need to test this yourself.

About this Benchmark

How to Run

This test was as follows:

build benchmark

Separate Process per Database

For each database, a new process is started, to ensure the previous test
does not impact the current test.

Number of Connections

This is mostly a single-connection benchmark. BenchB uses multiple
connections; the other tests use one connection.

Real-World Tests

Good benchmarks emulate real-world use cases. This benchmark includes
4 test cases: BenchSimple uses one table and many small updates /
deletes. BenchA is similar to the TPC-A test, but single connection / single
threaded (see also: www.tpc.org). BenchB is similar to the TPC-B test,

107 of 436

using multiple connections (one thread per connection). BenchC is similar
to the TPC-C test, but single connection / single threaded.

Comparing Embedded with Server Databases

This is mainly a benchmark for embedded databases (where the
application runs in the same virtual machine as the database engine).
However MySQL and PostgreSQL are not Java databases and cannot be
embedded into a Java application. For the Java databases, both embedded
and server modes are tested.

Test Platform

This test is run on Fedora v.34 with Oracle JVM 1.8 and SSD drive.

Multiple Runs

When a Java benchmark is run first, the code is not fully compiled and
therefore runs slower than when running multiple times. A benchmark
should always run the same test multiple times and ignore the first run(s).
This benchmark runs three times, but only the last run is measured.

Memory Usage

It is not enough to measure the time taken, the memory usage is
important as well. Performance can be improved by using a bigger cache,
but the amount of memory is limited. HSQLDB tables are kept fully in
memory by default; this benchmark uses 'disk based' tables for all
databases. Unfortunately, it is not so easy to calculate the memory usage
of PostgreSQL and MySQL, because they run in a different process than
the test. This benchmark currently does not print memory usage of those
databases.

Delayed Operations

Some databases delay some operations (for example flushing the buffers)
until after the benchmark is run. This benchmark waits between each
database tested, and each database runs in a different process
(sequentially).

Transaction Commit / Durability

Durability means transaction committed to the database will not be lost.
Some databases (for example MySQL) try to enforce this by default by
calling fsync() to flush the buffers, but most hard drives don't actually

108 of 436

flush all data. Calling the method slows down transaction commit a lot, but
doesn't always make data durable. When comparing the results, it is
important to think about the effect. Many database suggest to 'batch'
operations when possible. This benchmark switches off autocommit when
loading the data, and calls commit after each 1000 inserts. However many
applications need 'short' transactions at runtime (a commit after each
update). This benchmark commits after each update / delete in the simple
benchmark, and after each business transaction in the other benchmarks.
For databases that support delayed commits, a delay of one second is
used.

Using Prepared Statements

Wherever possible, the test cases use prepared statements.

Currently Not Tested: Startup Time

The startup time of a database engine is important as well for embedded
use. This time is not measured currently. Also, not tested is the time used
to create a database and open an existing database. Here, one (wrapper)
connection is opened at the start, and for each step a new connection is
opened and then closed.

PolePosition Benchmark
The PolePosition is an open source benchmark. The algorithms are all
quite simple. It was developed / sponsored by db4o. This test was not run
for a longer time, so please be aware that the results below are for older
database versions (H2 version 1.1, HSQLDB 1.8, Java 1.4).

Test Case Unit H2 HSQLDB MySQL

Melbourne write ms 369 249 2022

Melbourne read ms 47 49 93

Melbourne read_hot ms 24 43 95

Melbourne delete ms 147 133 176

Sepang write ms 965 1201 3213

Sepang read ms 765 948 3455

Sepang read_hot ms 789 859 3563

Sepang delete ms 1384 1596 6214

109 of 436

Bahrain write ms 1186 1387 6904

Bahrain query_indexed_string ms 336 170 693

Bahrain query_string ms 18064 39703 41243

Bahrain query_indexed_int ms 104 134 678

Bahrain update ms 191 87 159

Bahrain delete ms 1215 729 6812

Imola retrieve ms 198 194 4036

Barcelona write ms 413 832 3191

Barcelona read ms 119 160 1177

Barcelona query ms 20 5169 101

Barcelona delete ms 388 319 3287

Total ms 26724 53962 87112

There are a few problems with the PolePosition test:

• HSQLDB uses in-memory tables by default while H2 uses persistent
tables. The HSQLDB version included in PolePosition does not support
changing this, so you need to replace poleposition-0.20/lib/hsqldb.jar
with a newer version (for example hsqldb-1.8.0.7.jar), and then use
the setting
hsqldb.connecturl=jdbc:hsqldb:file:data/hsqldb/dbbench2;hsqldb.def
ault_table_type=cached;sql.enforce_size=true in the file
Jdbc.properties.

• HSQLDB keeps the database open between tests, while H2 closes the
database (losing all the cache). To change that, use the database
URL jdbc:h2:file:data/h2/dbbench;DB_CLOSE_DELAY=-1

• The amount of cache memory is quite important, specially for the
PolePosition test. Unfortunately, the PolePosition test does not take
this into account.

Database Performance Tuning

Keep Connections Open or Use a Connection Pool

If your application opens and closes connections a lot (for example, for
each request), you should consider using a connection pool. Opening a
connection using DriverManager.getConnection is specially slow if the

110 of 436

database is closed. By default the database is closed if the last connection
is closed.

If you open and close connections a lot but don't want to use a connection
pool, consider keeping a 'sentinel' connection open for as long as the
application runs, or use delayed database closing. See also Closing a
database.

Use a Modern JVM

Newer JVMs are faster. Upgrading to the latest version of your JVM can
provide a "free" boost to performance. Switching from the default Client
JVM to the Server JVM using the -server command-line option improves
performance at the cost of a slight increase in start-up time.

Virus Scanners

Some virus scanners scan files every time they are accessed. It is very
important for performance that database files are not scanned for viruses.
The database engine never interprets the data stored in the files as
programs, that means even if somebody would store a virus in a database
file, this would be harmless (when the virus does not run, it cannot
spread). Some virus scanners allow to exclude files by suffix. Ensure files
ending with .db are not scanned.

Using the Trace Options

If the performance hot spots are in the database engine, in many cases
the performance can be optimized by creating additional indexes, or
changing the schema. Sometimes the application does not directly
generate the SQL statements, for example if an O/R mapping tool is used.
To view the SQL statements and JDBC API calls, you can use the trace
options. For more information, see Using the Trace Options.

Index Usage

This database uses indexes to improve the performance of SELECT,
UPDATE, DELETE. If a column is used in the WHERE clause of a query, and
if an index exists on this column, then the index can be used. Multi-
column indexes are used if all or the first columns of the index are used.
Both equality lookup and range scans are supported. Indexes are used to
order result sets, but only if the condition uses the same index or no index

111 of 436

at all. The results are sorted in memory if required. Indexes are created
automatically for primary key and unique constraints. Indexes are also
created for foreign key constraints, if required. For other columns, indexes
need to be created manually using the CREATE INDEX statement.

Index Hints

If you have determined that H2 is not using the optimal index for your
query, you can use index hints to force H2 to use specific indexes.

SELECT * FROM TEST USE INDEX (index_name_1, index_name_2) WHERE
X=1

Only indexes in the list will be used when choosing an index to use on the
given table. There is no significance to order in this list.

It is possible that no index in the list is chosen, in which case a full table
scan will be used.

An empty list of index names forces a full table scan to be performed.

Each index in the list must exist.

How Data is Stored Internally

For persistent databases, if a table is created with a single column primary
key of type BIGINT, INT, SMALLINT, TINYINT, then the data of the table is
organized in this way. This is sometimes also called a "clustered index" or
"index organized table".

H2 internally stores table data and indexes in the form of b-trees. Each b-
tree stores entries as a list of unique keys (one or more columns) and data
(zero or more columns). The table data is always organized in the form of
a "data b-tree" with a single column key of type long. If a single column
primary key of type BIGINT, INT, SMALLINT, TINYINT is specified when
creating the table (or just after creating the table, but before inserting any
rows), then this column is used as the key of the data b-tree. If no primary
key has been specified, if the primary key column is of another data type,
or if the primary key contains more than one column, then a hidden
identity column of type BIGINT is added to the table, which is used as the
key for the data b-tree. All other columns of the table are stored within the
data area of this data b-tree (except for large BLOB, CLOB columns, which
are stored externally).

112 of 436

For each additional index, one new "index b-tree" is created. The key of
this b-tree consists of the indexed columns, plus the key of the data b-
tree. If a primary key is created after the table has been created, or if the
primary key contains multiple column, or if the primary key is not of the
data types listed above, then the primary key is stored in a new index b-
tree.

Optimizer

This database uses a cost based optimizer. For simple and queries and
queries with medium complexity (less than 7 tables in the join), the
expected cost (running time) of all possible plans is calculated, and the
plan with the lowest cost is used. For more complex queries, the algorithm
first tries all possible combinations for the first few tables, and the
remaining tables added using a greedy algorithm (this works well for most
joins). Afterwards a genetic algorithm is used to test at most 2000 distinct
plans. Only left-deep plans are evaluated.

Expression Optimization

After the statement is parsed, all expressions are simplified automatically
if possible. Operations are evaluated only once if all parameters are
constant. Functions are also optimized, but only if the function is constant
(always returns the same result for the same parameter values). If the
WHERE clause is always false, then the table is not accessed at all.

COUNT(*) Optimization

If the query only counts all rows of a table, then the data is not accessed.
However, this is only possible if no WHERE clause is used, that means it
only works for queries of the form SELECT COUNT(*) FROM table.

Updating Optimizer Statistics / Column Selectivity

When executing a query, at most one index per join can be used. If the
same table is joined multiple times, for each join only one index is used
(the same index could be used for both joins, or each join could use a
different index). Example: for the query SELECT * FROM TEST T1, TEST T2
WHERE T1.NAME='A' AND T2.ID=T1.ID, two index can be used, in this
case the index on NAME for T1 and the index on ID for T2.

113 of 436

If a table has multiple indexes, sometimes more than one index could be
used. Example: if there is a table TEST(ID, NAME, FIRSTNAME) and an
index on each column, then two indexes could be used for the query
SELECT * FROM TEST WHERE NAME='A' AND FIRSTNAME='B', the index on
NAME or the index on FIRSTNAME. It is not possible to use both indexes at
the same time. Which index is used depends on the selectivity of the
column. The selectivity describes the 'uniqueness' of values in a column. A
selectivity of 100 means each value appears only once, and a selectivity
of 1 means the same value appears in many or most rows. For the query
above, the index on NAME should be used if the table contains more
distinct names than first names.

The SQL statement ANALYZE can be used to automatically estimate the
selectivity of the columns in the tables. This command should be run from
time to time to improve the query plans generated by the optimizer.

In-Memory (Hash) Indexes

Using in-memory indexes, specially in-memory hash indexes, can speed
up queries and data manipulation.

In-memory indexes are automatically used for in-memory databases, but
can also be created for persistent databases using CREATE MEMORY
TABLE. In many cases, the rows itself will also be kept in-memory. Please
note this may cause memory problems for large tables.

In-memory hash indexes are backed by a hash table and are usually faster
than regular indexes. However, hash indexes only supports direct lookup
(WHERE ID = ?) but not range scan (WHERE ID < ?). To use hash indexes,
use HASH as in: CREATE UNIQUE HASH INDEX and CREATE TABLE ...(ID
INT PRIMARY KEY HASH,...).

Use Prepared Statements

If possible, use prepared statements with parameters.

Prepared Statements and IN(...)

Avoid generating SQL statements with a variable size IN(...) list. Instead,
use a prepared statement with arrays as in the following example:

PreparedStatement prep = conn.prepareStatement(
 "SELECT * FROM TEST WHERE ID = ANY(?)");

114 of 436

prep.setObject(1, new Long[] { 1L, 2L });
ResultSet rs = prep.executeQuery();

Optimization Examples

See src/test/org/h2/samples/optimizations.sql for a few examples of
queries that benefit from special optimizations built into the database.

Cache Size and Type

By default the cache size of H2 is quite small. Consider using a larger
cache size, or enable the second level soft reference cache. See also
Cache Settings.

Data Types

Each data type has different storage and performance characteristics:

• The DECIMAL/NUMERIC type is slower and requires more storage
than the REAL and DOUBLE PRECISION types.

• Text types are slower to read, write, and compare than numeric
types and generally require more storage.

• See Large Objects for information on BINARY vs. BLOB and VARCHAR
vs. CLOB performance.

• Parsing and formatting takes longer for the TIME, DATE, and
TIMESTAMP types than the numeric types.

• SMALLINT/TINYINT/BOOLEAN are not significantly smaller or faster to
work with than INTEGER in most modes.

Sorted Insert Optimization

To reduce disk space usage and speed up table creation, an optimization
for sorted inserts is available. When used, b-tree pages are split at the
insertion point. To use this optimization, add SORTED before the SELECT
statement:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR) AS
 SORTED SELECT X, SPACE(100) FROM SYSTEM_RANGE(1, 100);
INSERT INTO TEST
 SORTED SELECT X, SPACE(100) FROM SYSTEM_RANGE(101, 200);

115 of 436

Using the Built-In Profiler
A very simple Java profiler is built-in. To use it, use the following template:

import org.h2.util.Profiler;
Profiler prof = new Profiler();
prof.startCollecting();
// some long running process, at least a few seconds
prof.stopCollecting();
System.out.println(prof.getTop(3));

Application Profiling

Analyze First

Before trying to optimize performance, it is important to understand
where the problem is (what part of the application is slow). Blind
optimization or optimization based on guesses should be avoided,
because usually it is not an efficient strategy. There are various ways to
analyze an application. Sometimes two implementations can be compared
using System.currentTimeMillis(). But this does not work for complex
applications with many modules, and for memory problems.

A simple way to profile an application is to use the built-in profiling tool of
java. Example:

java -Xrunhprof:cpu=samples,depth=16 com.acme.Test

Unfortunately, it is only possible to profile the application from start to
end. Another solution is to create a number of full thread dumps. To do
that, first run jps -l to get the process id, and then run jstack <pid> or kill -
QUIT <pid> (Linux) or press Ctrl+C (Windows).

A simple profiling tool is included in H2. To use it, the application needs to
be changed slightly. Example:

import org.h2.util;
...
Profiler profiler = new Profiler();
profiler.startCollecting();
// application code
System.out.println(profiler.getTop(3));

116 of 436

The profiler is built into the H2 Console tool, to analyze databases that
open slowly. To use it, run the H2 Console, and then click on 'Test
Connection'. Afterwards, click on "Test successful" and you get the most
common stack traces, which helps to find out why it took so long to
connect. You will only get the stack traces if opening the database took
more than a few seconds.

Database Profiling
The ConvertTraceFile tool generates SQL statement statistics at the end of
the SQL script file. The format used is similar to the profiling data
generated when using java -Xrunhprof. For this to work, the trace level
needs to be 2 or higher (TRACE_LEVEL_FILE=2). The easiest way to set the
trace level is to append the setting to the database URL, for example:
jdbc:h2:~/test;TRACE_LEVEL_FILE=2 or
jdbc:h2:tcp://localhost/~/test;TRACE_LEVEL_FILE=2. As an example,
execute the following script using the H2 Console:

SET TRACE_LEVEL_FILE 2;
DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
@LOOP 1000 INSERT INTO TEST VALUES(?, ?);
SET TRACE_LEVEL_FILE 0;

After running the test case, convert the .trace.db file using the
ConvertTraceFile tool. The trace file is located in the same directory as the
database file.

java -cp h2*.jar org.h2.tools.ConvertTraceFile
 -traceFile "~/test.trace.db" -script "~/test.sql"

The generated file test.sql will contain the SQL statements as well as the
following profiling data (results vary):

-- SQL Statement Statistics
-- time: total time in milliseconds (accumulated)
-- count: how many times the statement ran
-- result: total update count or row count

-- self accu time count result sql
-- 62% 62% 158 1000 1000 INSERT INTO TEST VALUES(?, ?);

117 of 436

-- 37% 100% 93 1 0 CREATE TABLE TEST(ID INT PRIMARY
KEY...
-- 0% 100% 0 1 0 DROP TABLE IF EXISTS TEST;
-- 0% 100% 0 1 0 SET TRACE_LEVEL_FILE 3;

Statement Execution Plans
The SQL statement EXPLAIN displays the indexes and optimizations the
database uses for a statement. The following statements support
EXPLAIN: SELECT, UPDATE, DELETE, MERGE, INSERT. The following query
shows that the database uses the primary key index to search for rows:

EXPLAIN SELECT * FROM TEST WHERE ID=1;
SELECT
 TEST.ID,
 TEST.NAME
FROM PUBLIC.TEST
 /* PUBLIC.PRIMARY_KEY_2: ID = 1 */
WHERE ID = 1

For joins, the tables in the execution plan are sorted in the order they are
processed. The following query shows the database first processes the
table INVOICE (using the primary key). For each row, it will additionally
check that the value of the column AMOUNT is larger than zero, and for
those rows the database will search in the table CUSTOMER (using the
primary key). The query plan contains some redundancy so it is a valid
statement.

CREATE TABLE CUSTOMER(ID IDENTITY, NAME VARCHAR);
CREATE TABLE INVOICE(ID IDENTITY,
 CUSTOMER_ID INT REFERENCES CUSTOMER(ID),
 AMOUNT NUMBER);

EXPLAIN SELECT I.ID, C.NAME FROM CUSTOMER C, INVOICE I
WHERE I.ID=10 AND AMOUNT>0 AND C.ID=I.CUSTOMER_ID;

SELECT
 I.ID,
 C.NAME
FROM PUBLIC.INVOICE I
 /* PUBLIC.PRIMARY_KEY_9: ID = 10 */
 /* WHERE (I.ID = 10)

118 of 436

 AND (AMOUNT > 0)
 */
INNER JOIN PUBLIC.CUSTOMER C
 /* PUBLIC.PRIMARY_KEY_5: ID = I.CUSTOMER_ID */
 ON 1=1
WHERE (C.ID = I.CUSTOMER_ID)
 AND ((I.ID = 10)
 AND (AMOUNT > 0))

Displaying the Scan Count

EXPLAIN ANALYZE additionally shows the scanned rows per table and
pages read from disk per table or index. This will actually execute the
query, unlike EXPLAIN which only prepares it. The following query scanned
1000 rows, and to do that had to read 85 pages from the data area of the
table. Running the query twice will not list the pages read from disk,
because they are now in the cache. The tableScan means this query
doesn't use an index.

EXPLAIN ANALYZE SELECT * FROM TEST;
SELECT
 TEST.ID,
 TEST.NAME
FROM PUBLIC.TEST
 /* PUBLIC.TEST.tableScan */
 /* scanCount: 1000 */
/*
total: 85
TEST.TEST_DATA read: 85 (100%)
*/

The cache will prevent the pages are read twice. H2 reads all columns of
the row unless only the columns in the index are read. Except for large
CLOB and BLOB, which are not store in the table.

Special Optimizations

For certain queries, the database doesn't need to read all rows, or doesn't
need to sort the result even if ORDER BY is used.

For queries of the form SELECT COUNT(*), MIN(ID), MAX(ID) FROM TEST,
the query plan includes the line /* direct lookup */ if the data can be read
from an index.

119 of 436

For queries of the form SELECT DISTINCT CUSTOMER_ID FROM INVOICE,
the query plan includes the line /* distinct */ if there is an non-unique or
multi-column index on this column, and if this column has a low
selectivity.

For queries of the form SELECT * FROM TEST ORDER BY ID, the query plan
includes the line /* index sorted */ to indicate there is no separate sorting
required. /* index sorted: 2 of 3 columns */ indicates that only some
columns are sorted with an index. An additional sorting is still required,
but queries with the FETCH (TOP, LIMIT) clause may still stop their
execution earlier. An index on (A ASC, B ASC) columns can be used for
ORDER BY A, ORDER BY A DESC, ORDER BY A, B or ORDER BY A DESC, B
DESC. With ORDER BY A, B DESC this index can only be used for ordering
on the column A. If columns are nullable, order of nulls is also important.
Index on (A ASC NULLS FIRST) cannot be used for ORDER BY A ASC NULLS
LAST, but can be used for ORDER BY A ASC NULLS FIRST or ORDER BY A
DESC NULLS LAST. When neither NULLS FIRST nor NULLS LAST is
specified, a default is used, this default is controlled by
DEFAULT_NULL_ORDERING setting.

For queries of the form SELECT * FROM TEST GROUP BY ID ORDER BY ID,
the query plan includes the line /* group sorted */ to indicate there is no
separate sorting required.

How Data is Stored and How Indexes Work
Internally, each row in a table is identified by a unique number, the row id.
The rows of a table are stored with the row id as the key. The row id is a
number of type long. If a table has a single column primary key of type
INT or BIGINT, then the value of this column is the row id, otherwise the
database generates the row id automatically. There is a (non-standard)
way to access the row id: using the _ROWID_ pseudo-column:

CREATE TABLE ADDRESS(FIRST_NAME VARCHAR,
 NAME VARCHAR, CITY VARCHAR, PHONE VARCHAR);
INSERT INTO ADDRESS VALUES('John', 'Miller', 'Berne', '123 456 789');
INSERT INTO ADDRESS VALUES('Philip', 'Jones', 'Berne', '123 012 345');
SELECT _ROWID_, * FROM ADDRESS;

The data is stored in the database as follows:

ROWID FIRST_NAME NAME CITY PHONE

120 of 436

1 John Miller Berne 123 456 789
2 Philip Jones Berne 123 012 345
Access by row id is fast because the data is sorted by this key. Please note
the row id is not available until after the row was added (that means, it
can not be used in generated columns or constraints). If the query
condition does not contain the row id (and if no other index can be used),
then all rows of the table are scanned. A table scan iterates over all rows
in the table, in the order of the row id. To find out what strategy the
database uses to retrieve the data, use EXPLAIN SELECT:

SELECT * FROM ADDRESS WHERE NAME = 'Miller';

EXPLAIN SELECT PHONE FROM ADDRESS WHERE NAME = 'Miller';
SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.ADDRESS.tableScan */
WHERE NAME = 'Miller';

Indexes

An index internally is basically just a table that contains the indexed
column(s), plus the row id:

CREATE INDEX INDEX_PLACE ON ADDRESS(CITY, NAME, FIRST_NAME);

In the index, the data is sorted by the indexed columns. So this index
contains the following data:

CITY NAME FIRST_NAME _ROWID_
Berne Jones Philip 2
Berne Miller John 1
When the database uses an index to query the data, it searches the index
for the given data, and (if required) reads the remaining columns in the
main data table (retrieved using the row id). An index on city, name, and
first name (multi-column index) allows to quickly search for rows when the
city, name, and first name are known. If only the city and name, or only
the city is known, then this index is also used (so creating an additional
index on just the city is not needed). This index is also used when reading
all rows, sorted by the indexed columns. However, if only the first name is
known, then this index is not used:

121 of 436

EXPLAIN SELECT PHONE FROM ADDRESS
 WHERE CITY = 'Berne' AND NAME = 'Miller'
 AND FIRST_NAME = 'John';
SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE: FIRST_NAME = 'John'
 AND CITY = 'Berne'
 AND NAME = 'Miller'
 */
WHERE (FIRST_NAME = 'John')
 AND ((CITY = 'Berne')
 AND (NAME = 'Miller'));

EXPLAIN SELECT PHONE FROM ADDRESS WHERE CITY = 'Berne';
SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE: CITY = 'Berne' */
WHERE CITY = 'Berne';

EXPLAIN SELECT * FROM ADDRESS ORDER BY CITY, NAME, FIRST_NAME;
SELECT
 ADDRESS.FIRST_NAME,
 ADDRESS.NAME,
 ADDRESS.CITY,
 ADDRESS.PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE */
ORDER BY 3, 2, 1
/* index sorted */;

EXPLAIN SELECT PHONE FROM ADDRESS WHERE FIRST_NAME = 'John';
SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.ADDRESS.tableScan */
WHERE FIRST_NAME = 'John';

If your application often queries the table for a phone number, then it
makes sense to create an additional index on it:

CREATE INDEX IDX_PHONE ON ADDRESS(PHONE);

122 of 436

This index contains the phone number, and the row id:

PHONE _ROWID_
123 012 345 2
123 456 789 1

Using Multiple Indexes

Within a query, only one index per logical table is used. Using the
condition PHONE = '123 567 789' OR CITY = 'Berne' would use a table
scan instead of first using the index on the phone number and then the
index on the city. It makes sense to write two queries and combine then
using UNION. In this case, each individual query uses a different index:

EXPLAIN SELECT NAME FROM ADDRESS WHERE PHONE = '123 567 789'
UNION SELECT NAME FROM ADDRESS WHERE CITY = 'Berne';

(SELECT
 NAME
FROM PUBLIC.ADDRESS
 /* PUBLIC.IDX_PHONE: PHONE = '123 567 789' */
WHERE PHONE = '123 567 789')
UNION
(SELECT
 NAME
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE: CITY = 'Berne' */
WHERE CITY = 'Berne')

Fast Database Import
If you have to import a lot of rows, use a PreparedStatement or use CSV
import. Please note that CREATE TABLE(...) ... AS SELECT ... is faster than
CREATE TABLE(...); INSERT INTO ... SELECT

123 of 436

Advanced
Result Sets
Large Objects
Linked Tables
Spatial Features
Recursive Queries
Updatable Views
Transaction Isolation
Multi-Version Concurrency Control (MVCC)
Clustering / High Availability
Two Phase Commit
Compatibility
Keywords / Reserved Words
Standards Compliance
Run as Windows Service
ODBC Driver
ACID
Durability Problems
Using the Recover Tool
File Locking Protocols
Using Passwords
Password Hash
Protection against SQL Injection
Protection against Remote Access
Restricting Class Loading and Usage
Security Protocols
TLS Connections
Universally Unique Identifiers (UUID)
Settings Read from System Properties
Setting the Server Bind Address
Pluggable File System
Split File System
Java Objects Serialization
Limits and Limitations
Glossary and Links

124 of 436

Result Sets

Statements that Return a Result Set

The following statements return a result set: SELECT, TABLE, VALUES,
EXPLAIN, CALL, SCRIPT, SHOW, HELP. EXECUTE may return either a result
set or an update count. Result of a WITH statement depends on inner
command. All other statements return an update count.

Limiting the Number of Rows

Before the result is returned to the application, all rows are read by the
database. Server side cursors are not supported currently. If only the first
few rows are interesting for the application, then the result set size should
be limited to improve the performance. This can be done using FETCH in a
query (example: SELECT * FROM TEST FETCH FIRST 100 ROWS ONLY), or
by using Statement.setMaxRows(max).

Large Result Sets and External Sorting

For large result set, the result is buffered to disk. The threshold can be
defined using the statement SET MAX_MEMORY_ROWS. If ORDER BY is
used, the sorting is done using an external sort algorithm. In this case,
each block of rows is sorted using quick sort, then written to disk; when
reading the data, the blocks are merged together.

Large Objects

Storing and Reading Large Objects

If it is possible that the objects don't fit into memory, then the data type
CLOB (for textual data) or BLOB (for binary data) should be used. For
these data types, the objects are not fully read into memory, by using
streams. To store a BLOB, use PreparedStatement.setBinaryStream. To
store a CLOB, use PreparedStatement.setCharacterStream. To read a
BLOB, use ResultSet.getBinaryStream, and to read a CLOB, use
ResultSet.getCharacterStream. When using the client/server mode, large
BLOB and CLOB data is stored in a temporary file on the client side.

When to use CLOB/BLOB

By default, this database stores large LOB (CLOB and BLOB) objects
separate from the main table data. Small LOB objects are stored in-place,

125 of 436

the threshold can be set using MAX_LENGTH_INPLACE_LOB, but there is
still an overhead to use CLOB/BLOB. Because of this, BLOB and CLOB
should never be used for columns with a maximum size below about 200
bytes. The best threshold depends on the use case; reading in-place
objects is faster than reading from separate files, but slows down the
performance of operations that don't involve this column.

Linked Tables
This database supports linked tables, which means tables that don't exist
in the current database but are just links to another database. To create
such a link, use the CREATE LINKED TABLE statement:

CREATE LINKED TABLE LINK('org.postgresql.Driver', 'jdbc:postgresql:test',
'sa', 'sa', 'TEST');

You can then access the table in the usual way. Whenever the linked table
is accessed, the database issues specific queries over JDBC. Using the
example above, if you issue the query SELECT * FROM LINK WHERE ID=1,
then the following query is run against the PostgreSQL database: SELECT *
FROM TEST WHERE ID=?. The same happens for insert and update
statements. Only simple statements are executed against the target
database, that means no joins (queries that contain joins are converted to
simple queries). Prepared statements are used where possible.

To view the statements that are executed against the target table, set the
trace level to 3.

If multiple linked tables point to the same database (using the same
database URL), the connection is shared. To disable this, set the system
property h2.shareLinkedConnections=false.

The statement CREATE LINKED TABLE supports an optional schema name
parameter.

The following are not supported because they may result in a deadlock:
creating a linked table to the same database, and creating a linked table
to another database using the server mode if the other database is open
in the same server (use the embedded mode instead).

Data types that are not supported in H2 are also not supported for linked
tables, for example unsigned data types if the value is outside the range

126 of 436

of the signed type. In such cases, the columns needs to be cast to a
supported type.

Updatable Views
By default, views are not updatable. To make a view updatable, use an
"instead of" trigger as follows:

CREATE TRIGGER TRIGGER_NAME
INSTEAD OF INSERT, UPDATE, DELETE
ON VIEW_NAME
FOR EACH ROW CALL "com.acme.TriggerClassName";

Update the base table(s) within the trigger as required. For details, see
the sample application org.h2.samples.UpdatableView.

Transaction Isolation
Please note that most data definition language (DDL) statements, such as
"create table", commit the current transaction. See the Commands for
details.

Transaction isolation is provided for all data manipulation language (DML)
statements.

H2 supports read uncommitted, read committed, repeatable read,
snapshot, and serializable (partially, see below) isolation levels:

• Read uncommitted
Dirty reads, non-repeatable reads, and phantom reads are possible.
To enable, execute the SQL statement SET SESSION
CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ
UNCOMMITTED

• Read committed
This is the default level. Dirty reads aren't possible; non-repeatable
reads and phantom reads are possible. To enable, execute the SQL
statement SET SESSION CHARACTERISTICS AS TRANSACTION
ISOLATION LEVEL READ COMMITTED

• Repeatable read
Dirty reads and non-repeatable reads aren't possible, phantom reads
are possible. To enable, execute the SQL statement SET SESSION

127 of 436

CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE
READ

• Snapshot
Dirty reads, non-repeatable reads, and phantom reads aren't
possible. This isolation level is very expensive in databases with
many tables. To enable, execute the SQL statement SET SESSION
CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL SNAPSHOT

• Serializable
Dirty reads, non-repeatable reads, and phantom reads aren't
possible. Note that this isolation level in H2 currently doesn't ensure
equivalence of concurrent and serializable execution of transactions
that perform write operations. This isolation level is very expensive in
databases with many tables. To enable, execute the SQL statement
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
SERIALIZABLE

• Dirty reads
Means a connection can read uncommitted changes made by
another connection.
Possible with: read uncommitted.

• Non-repeatable reads
A connection reads a row, another connection changes a row and
commits, and the first connection re-reads the same row and gets
the new result.
Possible with: read uncommitted, read committed.

• Phantom reads
A connection reads a set of rows using a condition, another
connection inserts a row that falls in this condition and commits, then
the first connection re-reads using the same condition and gets the
new row.
Possible with: read uncommitted, read committed, repeatable read.

Multi-Version Concurrency Control (MVCC)

Insert and update operations only issue a shared lock on the table. An
exclusive lock is still used when adding or removing columns or when
dropping the table. Connections only 'see' committed data, and own
changes. That means, if connection A updates a row but doesn't commit
this change yet, connection B will see the old value. Only when the
change is committed, the new value is visible by other connections (read

128 of 436

committed). If multiple connections concurrently try to lock or update the
same row, the database waits until it can apply the change, but at most
until the lock timeout expires.

Lock Timeout

If a connection cannot get a lock on an object, the connection waits for
some amount of time (the lock timeout). During this time, hopefully the
connection holding the lock commits and it is then possible to get the
lock. If this is not possible because the other connection does not release
the lock for some time, the unsuccessful connection will get a lock timeout
exception. The lock timeout can be set individually for each connection.

Clustering / High Availability
This database supports a simple clustering / high availability mechanism.
The architecture is: two database servers run on two different computers,
and on both computers is a copy of the same database. If both servers
run, each database operation is executed on both computers. If one
server fails (power, hardware or network failure), the other server can still
continue to work. From this point on, the operations will be executed only
on one server until the other server is back up.

Clustering can only be used in the server mode (the embedded mode
does not support clustering). The cluster can be re-created using the
CreateCluster tool without stopping the remaining server. Applications
that are still connected are automatically disconnected, however when
appending ;AUTO_RECONNECT=TRUE, they will recover from that.

To initialize the cluster, use the following steps:

• Create a database
• Use the CreateCluster tool to copy the database to another location

and initialize the clustering. Afterwards, you have two databases
containing the same data.

• Start two servers (one for each copy of the database)
• You are now ready to connect to the databases with the client

application(s)

129 of 436

Using the CreateCluster Tool

To understand how clustering works, please try out the following example.
In this example, the two databases reside on the same computer, but
usually, the databases will be on different servers.

• Create two directories: server1, server2. Each directory will simulate
a directory on a computer.

• Start a TCP server pointing to the first directory. You can do this
using the command line:

java org.h2.tools.Server
 -tcp -tcpPort 9101
 -baseDir server1

• Start a second TCP server pointing to the second directory. This will
simulate a server running on a second (redundant) computer. You
can do this using the command line:

java org.h2.tools.Server
 -tcp -tcpPort 9102
 -baseDir server2

• Use the CreateCluster tool to initialize clustering. This will
automatically create a new, empty database if it does not exist. Run
the tool on the command line:

java org.h2.tools.CreateCluster
 -urlSource jdbc:h2:tcp://localhost:9101/~/test
 -urlTarget jdbc:h2:tcp://localhost:9102/~/test
 -user sa
 -serverList localhost:9101,localhost:9102

• You can now connect to the databases using an application or the H2
Console using the JDBC URL
jdbc:h2:tcp://localhost:9101,localhost:9102/~/test

• If you stop a server (by killing the process), you will notice that the
other machine continues to work, and therefore the database is still
accessible.

• To restore the cluster, you first need to delete the database that
failed, then restart the server that was stopped, and re-run the
CreateCluster tool.

130 of 436

Detect Which Cluster Instances are Running

To find out which cluster nodes are currently running, execute the
following SQL statement:

SELECT SETTING_VALUE FROM INFORMATION_SCHEMA.SETTINGS WHERE
SETTING_NAME = 'CLUSTER'

If the result is '' (two single quotes), then the cluster mode is disabled.
Otherwise, the list of servers is returned, enclosed in single quote.
Example: 'server1:9191,server2:9191'.

It is also possible to get the list of servers by using
Connection.getClientInfo().

The property list returned from getClientInfo() contains a numServers
property that returns the number of servers that are in the connection list.
To get the actual servers, getClientInfo() also has properties
server0..serverX, where serverX is the number of servers minus 1.

Example: To get the 2nd server in the connection list one uses
getClientInfo('server1'). Note: The serverX property only returns IP
addresses and ports and not hostnames.

Clustering Algorithm and Limitations

Read-only queries are only executed against the first cluster node, but all
other statements are executed against all nodes. There is currently no
load balancing made to avoid problems with transactions. The following
functions may yield different results on different cluster nodes and must
be executed with care: UUID(), RANDOM_UUID(), SECURE_RAND(),
SESSION_ID(), MEMORY_FREE(), MEMORY_USED(), CSVREAD(),
CSVWRITE(), RAND() [when not using a seed]. Those functions should not
be used directly in modifying statements (for example INSERT, UPDATE,
MERGE). However, they can be used in read-only statements and the
result can then be used for modifying statements. Identity columns aren't
supported. Instead, sequence values need to be manually requested and
then used to insert data (using two statements).

When using the cluster modes, result sets are read fully in memory by the
client, so that there is no problem if the server dies that executed the
query. Result sets must fit in memory on the client side.

131 of 436

The SQL statement SET AUTOCOMMIT FALSE is not supported in the
cluster mode. To disable autocommit, the method
Connection.setAutoCommit(false) needs to be called.

It is possible that a transaction from one connection overtakes a
transaction from a different connection. Depending on the operations, this
might result in different results, for example when conditionally
incrementing a value in a row.

Two Phase Commit
The two phase commit protocol is supported. 2-phase-commit works as
follows:

• Autocommit needs to be switched off
• A transaction is started, for example by inserting a row
• The transaction is marked 'prepared' by executing the SQL statement

PREPARE COMMIT transactionName
• The transaction can now be committed or rolled back
• If a problem occurs before the transaction was successfully

committed or rolled back (for example because a network problem
occurred), the transaction is in the state 'in-doubt'

• When re-connecting to the database, the in-doubt transactions can
be listed with SELECT * FROM INFORMATION_SCHEMA.IN_DOUBT

• Each transaction in this list must now be committed or rolled back by
executing COMMIT TRANSACTION transactionName or ROLLBACK
TRANSACTION transactionName

• The database needs to be closed and re-opened to apply the changes

Compatibility
This database is (up to a certain point) compatible to other databases
such as HSQLDB, MySQL and PostgreSQL. There are certain areas where
H2 is incompatible.

Transaction Commit when Autocommit is On

At this time, this database engine commits a transaction (if autocommit is
switched on) just before returning the result. For a query, this means the
transaction is committed even before the application scans through the
result set, and before the result set is closed. Other database engines may
commit the transaction in this case when the result set is closed.

132 of 436

Keywords / Reserved Words
There is a list of keywords that can't be used as identifiers (table names,
column names and so on), unless they are quoted (surrounded with
double quotes). The following tokens are keywords in H2:

Keyword H2
SQL Standard

2016 2011 2008 2003 1999 92

ALL + + + + + + +

AND + + + + + + +

ANY + + + + + + +

ARRAY + + + + + +

AS + + + + + + +

ASYMMETRIC + + + + + NR

AUTHORIZATION + + + + + + +

BETWEEN + + + + + NR +

BOTH CS + + + + + +

CASE + + + + + + +

CAST + + + + + + +

CHECK + + + + + + +

CONSTRAINT + + + + + + +

CROSS + + + + + + +

CURRENT_CATALOG + + + +

CURRENT_DATE + + + + + + +

CURRENT_PATH + + + + + +

CURRENT_ROLE + + + + + +

CURRENT_SCHEMA + + + +

CURRENT_TIME + + + + + + +

CURRENT_TIMESTAMP + + + + + + +

CURRENT_USER + + + + + + +

DAY + + + + + + +

DEFAULT + + + + + + +

133 of 436

Keyword H2
SQL Standard

2016 2011 2008 2003 1999 92

DISTINCT + + + + + + +

ELSE + + + + + + +

END + + + + + + +

EXCEPT + + + + + + +

EXISTS + + + + + NR +

FALSE + + + + + + +

FETCH + + + + + + +

FOR + + + + + + +

FOREIGN + + + + + + +

FROM + + + + + + +

FULL + + + + + + +

GROUP + + + + + + +

GROUPS CS + +

HAVING + + + + + + +

HOUR + + + + + + +

IF +

ILIKE CS

IN + + + + + + +

INNER + + + + + + +

INTERSECT + + + + + + +

INTERVAL + + + + + + +

IS + + + + + + +

JOIN + + + + + + +

KEY + NR NR NR NR + +

LEADING CS + + + + + +

LEFT + + + + + + +

LIKE + + + + + + +

LIMIT MS +

134 of 436

Keyword H2
SQL Standard

2016 2011 2008 2003 1999 92

LOCALTIME + + + + + +

LOCALTIMESTAMP + + + + + +

MINUS MS

MINUTE + + + + + + +

MONTH + + + + + + +

NATURAL + + + + + + +

NOT + + + + + + +

NULL + + + + + + +

OFFSET + + + +

ON + + + + + + +

OR + + + + + + +

ORDER + + + + + + +

OVER CS + + + +

PARTITION CS + + + +

PRIMARY + + + + + + +

QUALIFY +

RANGE CS + + + +

REGEXP CS

RIGHT + + + + + + +

ROW + + + + + +

ROWNUM +

ROWS CS + + + + + +

SECOND + + + + + + +

SELECT + + + + + + +

SESSION_USER + + + + + +

SET + + + + + + +

SOME + + + + + + +

SYMMETRIC + + + + + NR

135 of 436

Keyword H2
SQL Standard

2016 2011 2008 2003 1999 92

SYSTEM_USER + + + + + + +

TABLE + + + + + + +

TO + + + + + + +

TOP
MS
CS

TRAILING CS + + + + + +

TRUE + + + + + + +

UESCAPE + + + + +

UNION + + + + + + +

UNIQUE + + + + + + +

UNKNOWN + + + + + + +

USER + + + + + + +

USING + + + + + + +

VALUE + + + + + + +

VALUES + + + + + + +

WHEN + + + + + + +

WHERE + + + + + + +

WINDOW + + + + +

WITH + + + + + + +

YEAR + + + + + + +

ROWID +

Mode-sensitive keywords (MS) are keywords only in some compatibility
modes.

• LIMIT is a keywords only in Regular, Legacy, DB2, HSQLDB, MariaDB,
MySQL, and PostgreSQL compatibility modes. It is an identifier in
Strict, Derby, MSSQLServer, and Oracle compatibility modes.

• MINUS is a keyword only in Regular, Legacy, DB2, HSQLDB, and
Oracle compatibility modes. It is an identifier in Strict, Derby,
MSSQLServer, MariaDB, MySQL, and PostgreSQL compatibility
modes.

136 of 436

• TOP is a context-sensitive keyword (can be either keyword or
identifier) only in Regular, Legacy, HSQLDB, and MSSQLServer
compatibility modes. It is an identifier unconditionally in Strict,
Derby, DB2, MariaDB, MySQL, Oracle, and PostgreSQL compatibility
modes.

Context-sensitive keywords (CS) can be used as identifiers in some places,
but cannot be used as identifiers in others. Normal keywords (+) are
always treated as keywords.

Most keywords in H2 are also reserved (+) or non-reserved (NR) words in
the SQL Standard. Newer versions of H2 may have more keywords than
older ones. Reserved words from the SQL Standard are potential
candidates for keywords in future versions.

There is a compatibility setting SET NON_KEYWORDS that can be used as
a temporary workaround for applications that use keywords as unquoted
identifiers.

Standards Compliance
This database tries to be as much standard compliant as possible. For the
SQL language, ANSI/ISO is the main standard. There are several versions
that refer to the release date: SQL-92, SQL:1999, and SQL:2003.
Unfortunately, the standard documentation is not freely available. Another
problem is that important features are not standardized. Whenever this is
the case, this database tries to be compatible to other databases.

Supported Character Sets, Character Encoding, and Unicode

H2 internally uses Unicode, and supports all character encoding systems
and character sets supported by the virtual machine you use.

Run as Windows Service
Using a native wrapper / adapter, Java applications can be run as a
Windows Service. There are various tools available to do that. The Java
Service Wrapper from Tanuki Software, Inc. is included in the installation.
Batch files are provided to install, start, stop and uninstall the H2
Database Engine Service. This service contains the TCP Server and the H2
Console web application. The batch files are located in the directory
h2/service.

137 of 436

https://wrapper.tanukisoftware.org/

The service wrapper bundled with H2 is a 32-bit version. To use a 64-bit
version of Windows (x64), you need to use a 64-bit version of the wrapper,
for example the one from Simon Krenger.

When running the database as a service, absolute path should be used.
Using ~ in the database URL is problematic in this case, because it means
to use the home directory of the current user. The service might run
without or with the wrong user, so that the database files might end up in
an unexpected place.

Install the Service

The service needs to be registered as a Windows Service first. To do that,
double click on 1_install_service.bat. If successful, a command prompt
window will pop up and disappear immediately. If not, a message will
appear.

Start the Service

You can start the H2 Database Engine Service using the service manager
of Windows, or by double clicking on 2_start_service.bat. Please note that
the batch file does not print an error message if the service is not
installed.

Connect to the H2 Console

After installing and starting the service, you can connect to the H2
Console application using a browser. Double clicking on
3_start_browser.bat to do that. The default port (8082) is hard coded in
the batch file.

Stop the Service

To stop the service, double click on 4_stop_service.bat. Please note that
the batch file does not print an error message if the service is not installed
or started.

Uninstall the Service

To uninstall the service, double click on 5_uninstall_service.bat. If
successful, a command prompt window will pop up and disappear
immediately. If not, a message will appear.

138 of 436

https://www.krenger.ch/blog/java-service-wrapper-3-5-14-for-windows-x64/

Additional JDBC drivers

To use other databases (for example MySQL), the location of the JDBC
drivers of those databases need to be added to the environment variables
H2DRIVERS or CLASSPATH before installing the service. Multiple drivers
can be set; each entry needs to be separated with a ; (Windows) or :
(other operating systems). Spaces in the path names are supported. The
settings must not be quoted.

ODBC Driver
This database does not come with its own ODBC driver at this time, but it
supports the PostgreSQL network protocol. Therefore, the PostgreSQL
ODBC driver can be used. Support for the PostgreSQL network protocol is
quite new and should be viewed as experimental. It should not be used for
production applications.

To use the PostgreSQL ODBC driver on 64 bit versions of Windows, first
run c:/windows/syswow64/odbcad32.exe. At this point you set up your
DSN just like you would on any other system. See also: Re: ODBC Driver
on Windows 64 bit

ODBC Installation

First, the ODBC driver must be installed. Any recent PostgreSQL ODBC
driver should work, however version 8.2 (psqlodbc-08_02*) or newer is
recommended. The Windows version of the PostgreSQL ODBC driver is
available at https://www.postgresql.org/ftp/odbc/versions/msi/.

Starting the Server

After installing the ODBC driver, start the H2 Server using the command
line:

java -cp h2*.jar org.h2.tools.Server

The PG Server (PG for PostgreSQL protocol) is started as well. By default,
databases are stored in the current working directory where the server is
started. Use -baseDir to save databases in another directory, for example
the user home directory:

java -cp h2*.jar org.h2.tools.Server -baseDir ~

139 of 436

https://www.postgresql.org/ftp/odbc/versions/msi/
https://www.postgresql.org/message-id/dg76q0khn1@sea.gmane.org
https://www.postgresql.org/message-id/dg76q0khn1@sea.gmane.org

The PG server can be started and stopped from within a Java application
as follows:

Server server = Server.createPgServer("-baseDir", "~");
server.start();
...
server.stop();

By default, only connections from localhost are allowed. To allow remote
connections, use -pgAllowOthers when starting the server.

To map an ODBC database name to a different JDBC database name, use
the option -key when starting the server. Please note only one mapping is
allowed. The following will map the ODBC database named TEST to the
database URL jdbc:h2:~/data/test;cipher=aes:

java org.h2.tools.Server -pg -key TEST "~/data/test;cipher=aes"

ODBC Configuration

After installing the driver, a new Data Source must be added. In Windows,
run odbcad32.exe to open the Data Source Administrator. Then click on
'Add...' and select the PostgreSQL Unicode driver. Then click 'Finish'. You
will be able to change the connection properties. The property column
represents the property key in the odbc.ini file (which may be different
from the GUI).

Property Example Remarks

Data Source H2 Test The name of the ODBC Data Source

Database
~/
test;ifexist
s=true

The database name. This can include
connections settings. By default, the database
is stored in the current working directory
where the Server is started except when the -
baseDir setting is used. The name must be at
least 3 characters.

Servername localhost
The server name or IP address.
By default, only remote connections are
allowed

Username sa The database user name.

SSL
false
(disabled)

At this time, SSL is not supported.

140 of 436

Port 5435 The port where the PG Server is listening.

Password sa The database password.

To improve performance, please enable 'server side prepare' under
Options / Datasource / Page 2 / Server side prepare.

Afterwards, you may use this data source.

PG Protocol Support Limitations

At this time, only a subset of the PostgreSQL network protocol is
implemented. Also, there may be compatibility problems on the SQL level,
with the catalog, or with text encoding. Problems are fixed as they are
found. Currently, statements can not be canceled when using the PG
protocol. Also, H2 does not provide index meta over ODBC.

PostgreSQL ODBC Driver Setup requires a database password; that means
it is not possible to connect to H2 databases without password. This is a
limitation of the ODBC driver.

Security Considerations

Currently, the PG Server does not support challenge response or encrypt
passwords. This may be a problem if an attacker can listen to the data
transferred between the ODBC driver and the server, because the
password is readable to the attacker. Also, it is currently not possible to
use encrypted SSL connections. Therefore the ODBC driver should not be
used where security is important.

The first connection that opens a database using the PostgreSQL server
needs to be an administrator user. Subsequent connections don't need to
be opened by an administrator.

Using Microsoft Access

When using Microsoft Access to edit data in a linked H2 table, you may
need to enable the following option: Tools - Options - Edit/Find - ODBC
fields.

ACID
In the database world, ACID stands for:

141 of 436

• Atomicity: transactions must be atomic, meaning either all tasks are
performed or none.

• Consistency: all operations must comply with the defined constraints.
• Isolation: transactions must be isolated from each other.
• Durability: committed transaction will not be lost.

Atomicity

Transactions in this database are always atomic.

Consistency

By default, this database is always in a consistent state. Referential
integrity rules are enforced except when explicitly disabled.

Isolation

For H2, as with most other database systems, the default isolation level is
'read committed'. This provides better performance, but also means that
transactions are not completely isolated. H2 supports the transaction
isolation levels 'read uncommitted', 'read committed', 'repeatable read',
and 'serializable'.

Durability

This database does not guarantee that all committed transactions survive
a power failure. Tests show that all databases sometimes lose
transactions on power failure (for details, see below). Where losing
transactions is not acceptable, a laptop or UPS (uninterruptible power
supply) should be used. If durability is required for all possible cases of
hardware failure, clustering should be used, such as the H2 clustering
mode.

Durability Problems
Complete durability means all committed transaction survive a power
failure. Some databases claim they can guarantee durability, but such
claims are wrong. A durability test was run against H2, HSQLDB,
PostgreSQL, and Derby. All of those databases sometimes lose committed
transactions. The test is included in the H2 download, see
org.h2.test.poweroff.Test.

142 of 436

Ways to (Not) Achieve Durability

Making sure that committed transactions are not lost is more complicated
than it seems first. To guarantee complete durability, a database must
ensure that the log record is on the hard drive before the commit call
returns. To do that, databases use different methods. One is to use the
'synchronous write' file access mode. In Java, RandomAccessFile supports
the modes rws and rwd:

• rwd: every update to the file's content is written synchronously to the
underlying storage device.

• rws: in addition to rwd, every update to the metadata is written
synchronously.

A test (org.h2.test.poweroff.TestWrite) with one of those modes achieves
around 50 thousand write operations per second. Even when the
operating system write buffer is disabled, the write rate is around 50
thousand operations per second. This feature does not force changes to
disk because it does not flush all buffers. The test updates the same byte
in the file again and again. If the hard drive was able to write at this rate,
then the disk would need to make at least 50 thousand revolutions per
second, or 3 million RPM (revolutions per minute). There are no such hard
drives. The hard drive used for the test is about 7200 RPM, or about 120
revolutions per second. There is an overhead, so the maximum write rate
must be lower than that.

Calling fsync flushes the buffers. There are two ways to do that in Java:

• FileDescriptor.sync(). The documentation says that this forces all
system buffers to synchronize with the underlying device. This
method is supposed to return after all in-memory modified copies of
buffers associated with this file descriptor have been written to the
physical medium.

• FileChannel.force(). This method is supposed to force any updates to
this channel's file to be written to the storage device that contains it.

By default, MySQL calls fsync for each commit. When using one of those
methods, only around 60 write operations per second can be achieved,
which is consistent with the RPM rate of the hard drive used.
Unfortunately, even when calling FileDescriptor.sync() or
FileChannel.force(), data is not always persisted to the hard drive,
because most hard drives do not obey fsync(): see Your Hard Drive Lies to

143 of 436

https://hardware.slashdot.org/story/05/05/13/0529252/your-hard-drive-lies-to-you

You. In Mac OS X, fsync does not flush hard drive buffers. See Bad fsync?.
So the situation is confusing, and tests prove there is a problem.

Trying to flush hard drive buffers is hard, and if you do the performance is
very bad. First you need to make sure that the hard drive actually flushes
all buffers. Tests show that this can not be done in a reliable way. Then
the maximum number of transactions is around 60 per second. Because of
those reasons, the default behavior of H2 is to delay writing committed
transactions.

In H2, after a power failure, a bit more than one second of committed
transactions may be lost. To change the behavior, use SET WRITE_DELAY
and CHECKPOINT SYNC. Most other databases support commit delay as
well. In the performance comparison, commit delay was used for all
databases that support it.

Running the Durability Test

To test the durability / non-durability of this and other databases, you can
use the test application in the package org.h2.test.poweroff. Two
computers with network connection are required to run this test. One
computer just listens, while the test application is run (and power is cut)
on the other computer. The computer with the listener application opens a
TCP/IP port and listens for an incoming connection. The second computer
first connects to the listener, and then created the databases and starts
inserting records. The connection is set to 'autocommit', which means
after each inserted record a commit is performed automatically.
Afterwards, the test computer notifies the listener that this record was
inserted successfully. The listener computer displays the last inserted
record number every 10 seconds. Now, switch off the power manually,
then restart the computer, and run the application again. You will find out
that in most cases, none of the databases contains all the records that the
listener computer knows about. For details, please consult the source
code of the listener and test application.

Using the Recover Tool
The Recover tool can be used to extract the contents of a database file,
even if the database is corrupted. It also extracts the content of the
transaction log and large objects (CLOB or BLOB). To run the tool, type on
the command line:

144 of 436

https://lists.apple.com/archives/darwin-dev/2005/Feb/msg00072.html
https://hardware.slashdot.org/story/05/05/13/0529252/your-hard-drive-lies-to-you

java -cp h2*.jar org.h2.tools.Recover

For each database in the current directory, a text file will be created. This
file contains raw insert statements (for the data) and data definition (DDL)
statements to recreate the schema of the database. This file can be
executed using the RunScript tool or a RUNSCRIPT SQL statement. The
script includes at least one CREATE USER statement. If you run the script
against a database that was created with the same user, or if there are
conflicting users, running the script will fail. Consider running the script
against a database that was created with a user name that is not in the
script.

The Recover tool creates a SQL script from database file. It also processes
the transaction log.

To verify the database can recover at any time, append
;RECOVER_TEST=64 to the database URL in your test environment. This
will simulate an application crash after each 64 writes to the database file.
A log file named databaseName.h2.db.log is created that lists the
operations. The recovery is tested using an in-memory file system, that
means it may require a larger heap setting.

File Locking Protocols
Multiple concurrent connections to the same database are supported,
however a database file can only be open for reading and writing (in
embedded mode) by one process at the same time. Otherwise, the
processes would overwrite each others data and corrupt the database file.
To protect against this problem, whenever a database is opened, a lock
file is created to signal other processes that the database is in use. If the
database is closed, or if the process that opened the database stops
normally, this lock file is deleted.

In special cases (if the process did not terminate normally, for example
because there was a power failure), the lock file is not deleted by the
process that created it. That means the existence of the lock file is not a
safe protocol for file locking. However, this software uses a challenge-
response protocol to protect the database files. There are two methods
(algorithms) implemented to provide both security (that is, the same
database files cannot be opened by two processes at the same time) and

145 of 436

https://h2database.com/html/#runscript

simplicity (that is, the lock file does not need to be deleted manually by
the user). The two methods are 'file method' and 'socket methods'.

The file locking protocols (except the file locking method 'FS') have the
following limitation: if a shared file system is used, and the machine with
the lock owner is sent to sleep (standby or hibernate), another machine
may take over. If the machine that originally held the lock wakes up, the
database may become corrupt. If this situation can occur, the application
must ensure the database is closed when the application is put to sleep.

File Locking Method 'File'

The default method for database file locking for version 1.3 and older is
the 'File Method'. The algorithm is:

• If the lock file does not exist, it is created (using the atomic operation
File.createNewFile). Then, the process waits a little bit (20 ms) and
checks the file again. If the file was changed during this time, the
operation is aborted. This protects against a race condition when one
process deletes the lock file just after another one create it, and a
third process creates the file again. It does not occur if there are only
two writers.

• If the file can be created, a random number is inserted together with
the locking method ('file'). Afterwards, a watchdog thread is started
that checks regularly (every second once by default) if the file was
deleted or modified by another (challenger) thread / process.
Whenever that occurs, the file is overwritten with the old data. The
watchdog thread runs with high priority so that a change to the lock
file does not get through undetected even if the system is very busy.
However, the watchdog thread does use very little resources (CPU
time), because it waits most of the time. Also, the watchdog only
reads from the hard disk and does not write to it.

• If the lock file exists and was recently modified, the process waits for
some time (up to two seconds). If it was still changed, an exception is
thrown (database is locked). This is done to eliminate race conditions
with many concurrent writers. Afterwards, the file is overwritten with
a new version (challenge). After that, the thread waits for 2 seconds.
If there is a watchdog thread protecting the file, he will overwrite the
change and this process will fail to lock the database. However, if
there is no watchdog thread, the lock file will still be as written by

146 of 436

this thread. In this case, the file is deleted and atomically created
again. The watchdog thread is started in this case and the file is
locked.

This algorithm is tested with over 100 concurrent threads. In some cases,
when there are many concurrent threads trying to lock the database, they
block each other (meaning the file cannot be locked by any of them) for
some time. However, the file never gets locked by two threads at the
same time. However using that many concurrent threads / processes is
not the common use case. Generally, an application should throw an error
to the user if it cannot open a database, and not try again in a (fast) loop.

File Locking Method 'Socket'

There is a second locking mechanism implemented, but disabled by
default. To use it, append ;FILE_LOCK=SOCKET to the database URL. The
algorithm is:

• If the lock file does not exist, it is created. Then a server socket is
opened on a defined port, and kept open. The port and IP address of
the process that opened the database is written into the lock file.

• If the lock file exists, and the lock method is 'file', then the software
switches to the 'file' method.

• If the lock file exists, and the lock method is 'socket', then the
process checks if the port is in use. If the original process is still
running, the port is in use and this process throws an exception
(database is in use). If the original process died (for example due to a
power failure, or abnormal termination of the virtual machine), then
the port was released. The new process deletes the lock file and
starts again.

This method does not require a watchdog thread actively polling (reading)
the same file every second. The problem with this method is, if the file is
stored on a network share, two processes (running on different
computers) could still open the same database files, if they do not have a
direct TCP/IP connection.

File Locking Method 'FS'

This is the default mode for version 1.4 and newer. This database file
locking mechanism uses native file system lock on the database file. No
*.lock.db file is created in this case, and no background thread is started.

147 of 436

This mechanism may not work on all systems as expected. Some systems
allow to lock the same file multiple times within the same virtual machine,
and on some system native file locking is not supported or files are not
unlocked after a power failure.

To enable this feature, append ;FILE_LOCK=FS to the database URL.

This feature is relatively new. When using it for production, please ensure
your system does in fact lock files as expected.

Using Passwords

Using Secure Passwords

Remember that weak passwords can be broken regardless of the
encryption and security protocols. Don't use passwords that can be found
in a dictionary. Appending numbers does not make passwords secure. A
way to create good passwords that can be remembered is: take the first
letters of a sentence, use upper and lower case characters, and creatively
include special characters (but it's more important to use a long password
than to use special characters). Example:

i'sE2rtPiUKtT from the sentence it's easy to remember this password if you
know the trick.

Passwords: Using Char Arrays instead of Strings

Java strings are immutable objects and cannot be safely 'destroyed' by the
application. After creating a string, it will remain in the main memory of
the computer at least until it is garbage collected. The garbage collection
cannot be controlled by the application, and even if it is garbage collected
the data may still remain in memory. It might also be possible that the
part of memory containing the password is swapped to disk (if not enough
main memory is available), which is a problem if the attacker has access
to the swap file of the operating system.

It is a good idea to use char arrays instead of strings for passwords. Char
arrays can be cleared (filled with zeros) after use, and therefore the
password will not be stored in the swap file.

This database supports using char arrays instead of string to pass user
and file passwords. The following code can be used to do that:

148 of 436

import java.sql.*;
import java.util.*;
public class Test {
 public static void main(String[] args) throws Exception {
 String url = "jdbc:h2:~/test";
 Properties prop = new Properties();
 prop.setProperty("user", "sa");
 System.out.print("Password?");
 char[] password = System.console().readPassword();
 prop.put("password", password);
 Connection conn = null;
 try {
 conn = DriverManager.getConnection(url, prop);
 } finally {
 Arrays.fill(password, (char) 0);
 }
 conn.close();
 }
}

When using Swing, use javax.swing.JPasswordField.

Passing the User Name and/or Password in the URL

Instead of passing the user name as a separate parameter as in
Connection conn = DriverManager. getConnection("jdbc:h2:~/test", "sa",
"123"); the user name (and/or password) can be supplied in the URL itself:
Connection conn = DriverManager.
getConnection("jdbc:h2:~/test;USER=sa;PASSWORD=123"); The settings
in the URL override the settings passed as a separate parameter.

Password Hash
Sometimes the database password needs to be stored in a configuration
file (for example in the web.xml file). In addition to connecting with the
plain text password, this database supports connecting with the password
hash. This means that only the hash of the password (and not the plain
text password) needs to be stored in the configuration file. This will only
protect others from reading or re-constructing the plain text password
(even if they have access to the configuration file); it does not protect
others from accessing the database using the password hash.

149 of 436

To connect using the password hash instead of plain text password,
append ;PASSWORD_HASH=TRUE to the database URL, and replace the
password with the password hash. To calculate the password hash from a
plain text password, run the following command within the H2 Console
tool: @password_hash <upperCaseUserName> <password>. As an
example, if the user name is sa and the password is test, run the
command @password_hash SA test. Then use the resulting password hash
as you would use the plain text password. When using an encrypted
database, then the user password and file password need to be hashed
separately. To calculate the hash of the file password, run:
@password_hash file <filePassword>.

Protection against SQL Injection

What is SQL Injection

This database engine provides a solution for the security vulnerability
known as 'SQL Injection'. Here is a short description of what SQL injection
means. Some applications build SQL statements with embedded user
input such as:

String sql = "SELECT * FROM USERS WHERE PASSWORD='"+pwd+"'";
ResultSet rs = conn.createStatement().executeQuery(sql);

If this mechanism is used anywhere in the application, and user input is
not correctly filtered or encoded, it is possible for a user to inject SQL
functionality or statements by using specially built input such as (in this
example) this password: ' OR ''='. In this case the statement becomes:

SELECT * FROM USERS WHERE PASSWORD='' OR ''='';

Which is always true no matter what the password stored in the database
is. For more information about SQL Injection, see Glossary and Links.

Disabling Literals

SQL Injection is not possible if user input is not directly embedded in SQL
statements. A simple solution for the problem above is to use a prepared
statement:

String sql = "SELECT * FROM USERS WHERE PASSWORD=?";
PreparedStatement prep = conn.prepareStatement(sql);

150 of 436

prep.setString(1, pwd);
ResultSet rs = prep.executeQuery();

This database provides a way to enforce usage of parameters when
passing user input to the database. This is done by disabling embedded
literals in SQL statements. To do this, execute the statement:

SET ALLOW_LITERALS NONE;

Afterwards, SQL statements with text and number literals are not allowed
any more. That means, SQL statement of the form WHERE NAME='abc' or
WHERE CustomerId=10 will fail. It is still possible to use prepared
statements and parameters as described above. Also, it is still possible to
generate SQL statements dynamically, and use the Statement API, as long
as the SQL statements do not include literals. There is also a second mode
where number literals are allowed: SET ALLOW_LITERALS NUMBERS. To
allow all literals, execute SET ALLOW_LITERALS ALL (this is the default
setting). Literals can only be enabled or disabled by an administrator.

Using Constants

Disabling literals also means disabling hard-coded 'constant' literals. This
database supports defining constants using the CREATE CONSTANT
command. Constants can be defined only when literals are enabled, but
used even when literals are disabled. To avoid name clashes with column
names, constants can be defined in other schemas:

CREATE SCHEMA CONST AUTHORIZATION SA;
CREATE CONSTANT CONST.ACTIVE VALUE 'Active';
CREATE CONSTANT CONST.INACTIVE VALUE 'Inactive';
SELECT * FROM USERS WHERE TYPE=CONST.ACTIVE;

Even when literals are enabled, it is better to use constants instead of
hard-coded number or text literals in queries or views. With constants,
typos are found at compile time, the source code is easier to understand
and change.

Using the ZERO() Function

It is not required to create a constant for the number 0 as there is already
a built-in function ZERO():

151 of 436

SELECT * FROM USERS WHERE LENGTH(PASSWORD)=ZERO();

Protection against Remote Access
By default this database does not allow connections from other machines
when starting the H2 Console, the TCP server, or the PG server. Remote
access can be enabled using the command line options -webAllowOthers, -
tcpAllowOthers, -pgAllowOthers.

If you enable remote access using -tcpAllowOthers or -pgAllowOthers,
please also consider using the options -baseDir, so that remote users can
not create new databases or access existing databases with weak
passwords. When using the option -baseDir, only databases within that
directory may be accessed. Ensure the existing accessible databases are
protected using strong passwords.

If you enable remote access using -webAllowOthers, please ensure the
web server can only be accessed from trusted networks. If this option is
specified, -webExternalNames should be also specified with comma-
separated list of external names or addresses of this server. The options -
baseDir don't protect access to the saved connection settings, or access
to other databases accessible from the system.

Restricting Class Loading and Usage
By default there is no restriction on loading classes and executing Java
code for admins. That means an admin may call system functions such as
System.setProperty by executing:

CREATE ALIAS SET_PROPERTY FOR "java.lang.System.setProperty";
CALL SET_PROPERTY('abc', '1');
CREATE ALIAS GET_PROPERTY FOR "java.lang.System.getProperty";
CALL GET_PROPERTY('abc');

To restrict users (including admins) from loading classes and executing
code, the list of allowed classes can be set in the system property
h2.allowedClasses in the form of a comma separated list of classes or
patterns (items ending with *). By default all classes are allowed.
Example:

java -Dh2.allowedClasses=java.lang.Math,com.acme.*

152 of 436

This mechanism is used for all user classes, including database event
listeners, trigger classes, user-defined functions, user-defined aggregate
functions, and JDBC driver classes (with the exception of the H2 driver)
when using the H2 Console.

Security Protocols
The following paragraphs document the security protocols used in this
database. These descriptions are very technical and only intended for
security experts that already know the underlying security primitives.

User Password Encryption

When a user tries to connect to a database, the combination of user
name, @, and password are hashed using SHA-256, and this hash value is
transmitted to the database. This step does not protect against an
attacker that re-uses the value if he is able to listen to the (unencrypted)
transmission between the client and the server. But, the passwords are
never transmitted as plain text, even when using an unencrypted
connection between client and server. That means if a user reuses the
same password for different things, this password is still protected up to
some point. See also 'RFC 2617 - HTTP Authentication: Basic and Digest
Access Authentication' for more information.

When a new database or user is created, a new random salt value is
generated. The size of the salt is 64 bits. Using the random salt reduces
the risk of an attacker pre-calculating hash values for many different
(commonly used) passwords.

The combination of user-password hash value (see above) and salt is
hashed using SHA-256. The resulting value is stored in the database.
When a user tries to connect to the database, the database combines
user-password hash value with the stored salt value and calculates the
hash value. Other products use multiple iterations (hash the hash value
again and again), but this is not done in this product to reduce the risk of
denial of service attacks (where the attacker tries to connect with bogus
passwords, and the server spends a lot of time calculating the hash value
for each password). The reasoning is: if the attacker has access to the
hashed passwords, he also has access to the data in plain text, and
therefore does not need the password any more. If the data is protected

153 of 436

by storing it on another computer and only accessible remotely, then the
iteration count is not required at all.

File Encryption

The database files can be encrypted using the AES-128 algorithm.

When a user tries to connect to an encrypted database, the combination
of file@ and the file password is hashed using SHA-256. This hash value is
transmitted to the server.

When a new database file is created, a new cryptographically secure
random salt value is generated. The size of the salt is 64 bits. The
combination of the file password hash and the salt value is hashed 1024
times using SHA-256. The reason for the iteration is to make it harder for
an attacker to calculate hash values for common passwords.

The resulting hash value is used as the key for the block cipher algorithm.
Then, an initialization vector (IV) key is calculated by hashing the key
again using SHA-256. This is to make sure the IV is unknown to the
attacker. The reason for using a secret IV is to protect against watermark
attacks.

Before saving a block of data (each block is 8 bytes long), the following
operations are executed: first, the IV is calculated by encrypting the block
number with the IV key (using the same block cipher algorithm). This IV is
combined with the plain text using XOR. The resulting data is encrypted
using the AES-128 algorithm.

When decrypting, the operation is done in reverse. First, the block is
decrypted using the key, and then the IV is calculated combined with the
decrypted text using XOR.

Therefore, the block cipher mode of operation is CBC (cipher-block
chaining), but each chain is only one block long. The advantage over the
ECB (electronic codebook) mode is that patterns in the data are not
revealed, and the advantage over multi block CBC is that flipped cipher
text bits are not propagated to flipped plaintext bits in the next block.

Database encryption is meant for securing the database while it is not in
use (stolen laptop and so on). It is not meant for cases where the attacker
has access to files while the database is in use. When he has write access,

154 of 436

he can for example replace pieces of files with pieces of older versions
and manipulate data like this.

File encryption slows down the performance of the database engine.
Compared to unencrypted mode, database operations take about 2.5
times longer using AES (embedded mode).

Wrong Password / User Name Delay

To protect against remote brute force password attacks, the delay after
each unsuccessful login gets double as long. Use the system properties
h2.delayWrongPasswordMin and h2.delayWrongPasswordMax to change
the minimum (the default is 250 milliseconds) or maximum delay (the
default is 4000 milliseconds, or 4 seconds). The delay only applies for
those using the wrong password. Normally there is no delay for a user that
knows the correct password, with one exception: after using the wrong
password, there is a delay of up to (randomly distributed) the same delay
as for a wrong password. This is to protect against parallel brute force
attacks, so that an attacker needs to wait for the whole delay. Delays are
synchronized. This is also required to protect against parallel attacks.

There is only one exception message for both wrong user and for wrong
password, to make it harder to get the list of user names. It is not possible
from the stack trace to see if the user name was wrong or the password.

HTTPS Connections

The web server supports HTTP and HTTPS connections using
SSLServerSocket. There is a default self-certified certificate to support an
easy starting point, but custom certificates are supported as well.

TLS Connections
Remote TLS connections are supported using the Java Secure Socket
Extension (SSLServerSocket, SSLSocket).

To use your own keystore, set the system properties
javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword before starting
the H2 server and client. See also Customizing the Default Key and Trust
Stores, Store Types, and Store Passwords for more information.

155 of 436

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

Universally Unique Identifiers (UUID)
This database supports UUIDs. Also supported is a function to create new
UUIDs using a cryptographically strong pseudo random number generator.
With random UUIDs, the chance of two having the same value can be
calculated using the probability theory. See also 'Birthday Paradox'.
Standardized randomly generated UUIDs have 122 random bits. 4 bits are
used for the version (Randomly generated UUID), and 2 bits for the variant
(Leach-Salz). This database supports generating such UUIDs using the
built-in function RANDOM_UUID() or UUID(). Here is a small program to
estimate the probability of having two identical UUIDs after generating a
number of values:

public class Test {
 public static void main(String[] args) throws Exception {
 double x = Math.pow(2, 122);
 for (int i = 35; i < 62; i++) {
 double n = Math.pow(2, i);
 double p = 1 - Math.exp(-(n * n) / 2 / x);
 System.out.println("2^" + i + "=" + (1L << i) +
 " probability: 0" +
 String.valueOf(1 + p).substring(1));
 }
 }
}

Some values are:

Number of UUIs Probability of Duplicates

2^36=68'719'476'736 0.000'000'000'000'000'4

2^41=2'199'023'255'552 0.000'000'000'000'4

2^46=70'368'744'177'664 0.000'000'000'4

To help non-mathematicians understand what those numbers mean, here
a comparison: one's annual risk of being hit by a meteorite is estimated to
be one chance in 17 billion, that means the probability is about
0.000'000'000'06.

Spatial Features
H2 supports the geometry data type and spatial indexes. Here is an
example SQL script to create a table with a spatial column and index:

156 of 436

CREATE TABLE GEO_TABLE(
 GID BIGINT GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 THE_GEOM GEOMETRY);
INSERT INTO GEO_TABLE(THE_GEOM) VALUES
 ('POINT(500 505)'),
 ('LINESTRING(550 551, 525 512, 565 566)'),
 ('POLYGON ((550 521, 580 540, 570 564, 512 566, 550 521))');
CREATE SPATIAL INDEX GEO_TABLE_SPATIAL_INDEX
 ON GEO_TABLE(THE_GEOM);

To query the table using geometry envelope intersection, use the
operation &&, as in PostGIS:

SELECT * FROM GEO_TABLE
 WHERE THE_GEOM &&
 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490 490))';

You can verify that the spatial index is used using the "explain plan"
feature:

EXPLAIN SELECT * FROM GEO_TABLE
 WHERE THE_GEOM &&
 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490 490))';
-- Result
SELECT
 "PUBLIC"."GEO_TABLE"."GID",
 "PUBLIC"."GEO_TABLE"."THE_GEOM"
FROM "PUBLIC"."GEO_TABLE"
 /* PUBLIC.GEO_TABLE_SPATIAL_INDEX: THE_GEOM &&
 GEOMETRY 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490
490))' */
WHERE "THE_GEOM" &&
 GEOMETRY 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490
490))'

For persistent databases, the spatial index is stored on disk; for in-
memory databases, the index is kept in memory.

Recursive Queries
H2 has experimental support for recursive queries using so called
"common table expressions" (CTE). Examples:

157 of 436

WITH RECURSIVE T(N) AS (
 SELECT 1
 UNION ALL
 SELECT N+1 FROM T WHERE N<10
)
SELECT * FROM T;
-- returns the values 1 .. 10

WITH RECURSIVE T(N) AS (
 SELECT 1
 UNION ALL
 SELECT N*2 FROM T WHERE N<10
)
SELECT * FROM T;
-- returns the values 1, 2, 4, 8, 16

CREATE TABLE FOLDER(ID INT PRIMARY KEY, NAME VARCHAR(255),
PARENT INT);

INSERT INTO FOLDER VALUES(1, null, null), (2, 'src', 1),
(3, 'main', 2), (4, 'org', 3), (5, 'test', 2);

WITH LINK(ID, NAME, LEVEL) AS (
 SELECT ID, NAME, 0 FROM FOLDER WHERE PARENT IS NULL
 UNION ALL
 SELECT FOLDER.ID, COALESCE(LINK.NAME || '/', '') || FOLDER.NAME,
LEVEL + 1
 FROM LINK INNER JOIN FOLDER ON LINK.ID = FOLDER.PARENT
)
SELECT NAME FROM LINK WHERE NAME IS NOT NULL ORDER BY ID;
-- src
-- src/main
-- src/main/org
-- src/test

Limitations: Recursive queries need to be of the type UNION ALL, and the
recursion needs to be on the second part of the query. No tables or views
with the name of the table expression may exist. Different table
expression names need to be used when using multiple distinct table
expressions within the same transaction and for the same session. All
columns of the table expression are of type VARCHAR, and may need to
be cast to the required data type. Views with recursive queries are not

158 of 436

supported. Subqueries and INSERT INTO ... FROM with recursive queries
are not supported. Parameters are only supported within the last SELECT
statement (a workaround is to use session variables like @start within the
table expression). The syntax is:

WITH RECURSIVE recursiveQueryName(columnName, ...) AS (
 nonRecursiveSelect
 UNION ALL
 recursiveSelect
)
select

Settings Read from System Properties
Some settings of the database can be set on the command line using -
DpropertyName=value. It is usually not required to change those settings
manually. The settings are case sensitive. Example:

java -Dh2.serverCachedObjects=256 org.h2.tools.Server

The current value of the settings can be read in the table
INFORMATION_SCHEMA.SETTINGS.

For a complete list of settings, see SysProperties.

Setting the Server Bind Address
Usually server sockets accept connections on any/all local addresses. This
may be a problem on multi-homed hosts. To bind only to one address, use
the system property h2.bindAddress. This setting is used for both regular
server sockets and for TLS server sockets. IPv4 and IPv6 address formats
are supported.

Pluggable File System
This database supports a pluggable file system API. The file system
implementation is selected using a file name prefix. Internally, the
interfaces are very similar to the Java 7 NIO2 API. The following file
systems are included:

• file: the default file system that uses FileChannel.
• zip: read-only zip-file based file system. Format:

zip:~/zipFileName!/fileName.
159 of 436

https://h2database.com/javadoc/org/h2/engine/SysProperties.html

• split: file system that splits files in 1 GB files (stackable with other file
systems).

• nioMapped: file system that uses memory mapped files (faster in
some operating systems). Please note that there currently is a file
size limitation of 2 GB when using this file system. To work around
this limitation, combine it with the split file system:
split:nioMapped:~/test.

• async: experimental file system that uses AsynchronousFileChannel
instead of FileChannel (faster in some operating systems).

• memFS: in-memory file system (slower than mem; experimental;
mainly used for testing the database engine itself).

• memLZF: compressing in-memory file system (slower than memFS
but uses less memory; experimental; mainly used for testing the
database engine itself).

• nioMemFS: stores data outside of the VM's heap - useful for large
memory DBs without incurring GC costs.

• nioMemLZF: stores compressed data outside of the VM's heap -
useful for large memory DBs without incurring GC costs. Use
"nioMemLZF:12:" to tweak the % of blocks that are stored
uncompressed. If you size this to your working set correctly,
compressed storage is roughly the same performance as
uncompressed. The default value is 1%.

As an example, to use the async: file system use the following database
URL: jdbc:h2:async:~/test.

To register a new file system, extend the classes org.h2.store.fs.FilePath,
FileBase, and call the method FilePath.register before using it.

For input streams (but not for random access files), URLs may be used in
addition to the registered file systems. Example:
jar:file:///c:/temp/example.zip!/org/example/nested.csv. To read a stream
from the classpath, use the prefix classpath:, as in
classpath:/org/h2/samples/newsfeed.sql.

Split File System
The file system prefix split: is used to split logical files into multiple
physical files, for example so that a database can get larger than the
maximum file system size of the operating system. If the logical file is
larger than the maximum file size, then the file is split as follows:

160 of 436

• <fileName> (first block, is always created)
• <fileName>.1.part (second block)

More physical files (*.2.part, *.3.part) are automatically created / deleted if
needed. The maximum physical file size of a block is 2^30 bytes, which is
also called 1 GiB or 1 GB. However this can be changed if required, by
specifying the block size in the file name. The file name format is:
split:<x>:<fileName> where the file size per block is 2^x. For 1 MiB block
sizes, use x = 20 (because 2^20 is 1 MiB). The following file name means
the logical file is split into 1 MiB blocks: split:20:~/test.h2.db. An example
database URL for this case is jdbc:h2:split:20:~/test.

Java Objects Serialization
Java objects serialization is enabled by default for columns of type OTHER,
using standard Java serialization/deserialization semantics.

To disable this feature set the system property
h2.serializeJavaObject=false (default: true).

Serialization and deserialization of java objects is customizable both at
system level and at database level providing a JavaObjectSerializer
implementation:

• At system level set the system property h2.javaObjectSerializer with
the Fully Qualified Name of the JavaObjectSerializer interface
implementation. It will be used over the entire JVM session to
(de)serialize java objects being stored in column of type OTHER.
Example h2.javaObjectSerializer=com.acme.SerializerClassName.

• At database level execute the SQL statement SET
JAVA_OBJECT_SERIALIZER 'com.acme.SerializerClassName' or append
;JAVA_OBJECT_SERIALIZER='com.acme.SerializerClassName' to the
database URL:
jdbc:h2:~/test;JAVA_OBJECT_SERIALIZER='com.acme.SerializerClassN
ame'.

Please note that this SQL statement can only be executed before any
tables are defined.

Limits and Limitations
This database has the following known limitations:

161 of 436

https://h2database.com/javadoc/org/h2/api/JavaObjectSerializer.html

• Database file size limit: 4 TB (using the default page size of 2 KB) or
higher (when using a larger page size). This limit is including CLOB
and BLOB data.

• The maximum file size for FAT or FAT32 file systems is 4 GB. That
means when using FAT or FAT32, the limit is 4 GB for the data. This is
the limitation of the file system. The database does provide a
workaround for this problem, it is to use the file name prefix split:. In
that case files are split into files of 1 GB by default. An example
database URL is: jdbc:h2:split:~/test.

• The maximum number of rows per table is 2^64.
• The maximum number of open transactions is 65535.
• The maximum number of columns in a table or expressions in a

SELECT statement is 16384. The actual possible number can be
smaller if their definitions are too long.

• The maximum length of an identifier (table name, column name, and
so on) is 256 characters.

• The maximum length of CHARACTER, CHARACTER VARYING and
VARCHAR_IGNORECASE values and columns is 1_000_000_000
characters.

• The maximum length of BINARY, BINARY VARYING, JAVA_OBJECT,
GEOMETRY, and JSON values and columns is 1_000_000_000 bytes.

• The maximum precision of NUMERIC and DECFLOAT values and
columns is 100000.

• The maximum length of an ENUM value is 1048576 characters, the
maximum number of ENUM values is 65536.

• The maximum cardinality of an ARRAY value or column is 65536.
• The maximum degree of a ROW value or column is 16384.
• The maximum index of parameter is 100000.
• Main memory requirements: The larger the database, the more main

memory is required.
• Limit on the complexity of SQL statements. Very complex

expressions may result in a stack overflow exception.
• There is no limit for the following entities, except the memory and

storage capacity: maximum number of tables, indexes, triggers, and
other database objects; maximum statement length, tables per
statement; maximum rows per query; maximum indexes per table,
lob columns per table, and so on; maximum row length, index row
length, select row length.

162 of 436

• Querying from the metadata tables is slow if there are many tables
(thousands).

• For other limitations on data types, see the data type documentation
of this database.

Glossary and Links

Term Description

AES-128
A block encryption algorithm. See also: Wikipedia:
Advanced Encryption Standard

Birthday
Paradox

Describes the higher than expected probability that two
persons in a room have the same birthday. Also valid for
randomly generated UUIDs. See also: Wikipedia: Birthday
problem

Digest
Protocol to protect a password (but not to protect data).
See also: RFC 2617: HTTP Digest Access Authentication

HTTPS
A protocol to provide security to HTTP connections. See
also: RFC 2818: HTTP Over TLS

Modes of
Operation

Wikipedia: Block cipher mode of operation

Salt
Random number to increase the security of passwords.
See also: Wikipedia: Key derivation function

SHA-256
A cryptographic one-way hash function. See also:
Wikipedia: Secure Hash Algorithms

SQL Injection
A security vulnerability where an application embeds SQL
statements or expressions in user input. See also:
Wikipedia: SQL injection

Watermark
Attack

Security problem of certain encryption programs where
the existence of certain data can be proven without
decrypting. For more information, search in the internet
for 'watermark attack cryptoloop'

SSL/TLS
Secure Sockets Layer / Transport Layer Security. See also:
Java Secure Socket Extension (JSSE)

163 of 436

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://www.ietf.org/rfc/rfc2818.txt
https://www.ietf.org/rfc/rfc2617.txt
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Commands

Index

Commands (Data Manipulation)

SELECT
INSERT
UPDATE
DELETE
BACKUP
CALL
EXECUTE IMMEDIATE
EXPLAIN
MERGE INTO
MERGE USING
RUNSCRIPT
SCRIPT
SHOW
Explicit table
Table value
WITH

Commands (Data Definition)

ALTER DOMAIN
ALTER DOMAIN ADD CONSTRAINT
ALTER DOMAIN DROP CONSTRAINT
ALTER DOMAIN RENAME
ALTER DOMAIN RENAME CONSTRAINT
ALTER INDEX RENAME
ALTER SCHEMA RENAME
ALTER SEQUENCE
ALTER TABLE ADD
ALTER TABLE ADD CONSTRAINT
ALTER TABLE RENAME CONSTRAINT
ALTER TABLE ALTER COLUMN
ALTER TABLE DROP COLUMN
ALTER TABLE DROP CONSTRAINT

164 of 436

ALTER TABLE SET
ALTER TABLE RENAME
ALTER USER ADMIN
ALTER USER RENAME
ALTER USER SET PASSWORD
ALTER VIEW RECOMPILE
ALTER VIEW RENAME
ANALYZE
COMMENT ON
CREATE AGGREGATE
CREATE ALIAS
CREATE CONSTANT
CREATE DOMAIN
CREATE INDEX
CREATE LINKED TABLE
CREATE ROLE
CREATE SCHEMA
CREATE SEQUENCE
CREATE TABLE
CREATE TRIGGER
CREATE USER
CREATE VIEW
CREATE MATERIALIZED VIEW
DROP AGGREGATE
DROP ALIAS
DROP ALL OBJECTS
DROP CONSTANT
DROP DOMAIN
DROP INDEX
DROP ROLE
DROP SCHEMA
DROP SEQUENCE
DROP TABLE
DROP TRIGGER
DROP USER
DROP VIEW
DROP MATERIALIZED VIEW

165 of 436

REFRESH MATERIALIZED VIEW
TRUNCATE TABLE

Commands (Other)

CHECKPOINT
CHECKPOINT SYNC
COMMIT
COMMIT TRANSACTION
GRANT RIGHT
GRANT ALTER ANY SCHEMA
GRANT ROLE
HELP
PREPARE COMMIT
REVOKE RIGHT
REVOKE ALTER ANY SCHEMA
REVOKE ROLE
ROLLBACK
ROLLBACK TRANSACTION
SAVEPOINT
SET @
SET ALLOW_LITERALS
SET AUTOCOMMIT
SET CACHE_SIZE
SET CLUSTER
SET BUILTIN_ALIAS_OVERRIDE
SET CATALOG
SET COLLATION
SET DATABASE_EVENT_LISTENER
SET DB_CLOSE_DELAY
SET DEFAULT_LOCK_TIMEOUT
SET DEFAULT_NULL_ORDERING
SET DEFAULT_TABLE_TYPE
SET EXCLUSIVE
SET IGNORECASE
SET IGNORE_CATALOGS
SET JAVA_OBJECT_SERIALIZER
SET LAZY_QUERY_EXECUTION
SET LOCK_MODE

166 of 436

SET LOCK_TIMEOUT
SET MAX_LENGTH_INPLACE_LOB
SET MAX_LOG_SIZE
SET MAX_MEMORY_ROWS
SET MAX_MEMORY_UNDO
SET MAX_OPERATION_MEMORY
SET MODE
SET NON_KEYWORDS
SET OPTIMIZE_REUSE_RESULTS
SET PASSWORD
SET QUERY_STATISTICS
SET QUERY_STATISTICS_MAX_ENTRIES
SET QUERY_TIMEOUT
SET REFERENTIAL_INTEGRITY
SET RETENTION_TIME
SET SALT HASH
SET SCHEMA
SET SCHEMA_SEARCH_PATH
SET SESSION CHARACTERISTICS
SET THROTTLE
SET TIME ZONE
SET TRACE_LEVEL
SET TRACE_MAX_FILE_SIZE
SET TRUNCATE_LARGE_LENGTH
SET VARIABLE_BINARY
SET WRITE_DELAY
SHUTDOWN

Details
Non-standard syntax is marked in green. Compatibility-only non-standard
syntax is marked in red, don't use it unless you need it for compatibility
with other databases or old versions of H2.

Commands (Data Manipulation)

SELECT

SELECT [DISTINCT [ON (expression [,...])] | ALL]
selectExpression [,...]

167 of 436

[FROM tableExpression [,...]]
[WHERE expression]
[GROUP BY groupingElement [,...]] [HAVING expression]
[WINDOW { { windowName AS windowSpecification } [,...] }]
[QUALIFY expression]
[{ UNION [ALL] | EXCEPT | INTERSECT } query]
[ORDER BY selectOrder [,...]]
[OFFSET expression { ROW | ROWS }]
[FETCH { FIRST | NEXT } [expression [PERCENT]] { ROW | ROWS }
{ ONLY | WITH TIES }]
[FOR UPDATE [NOWAIT | WAIT secondsNumeric | SKIP LOCKED]]

Selects data from a table or multiple tables.

Command is executed in the following logical order:

1. Data is taken from table value expressions that are specified in the
FROM clause, joins are executed. If FROM clause is not specified a single
row is constructed.

2. WHERE filters rows. Aggregate or window functions are not allowed in
this clause.

3. GROUP BY groups the result by the given expression(s). If GROUP BY
clause is not specified, but non-window aggregate functions are used or
HAVING is specified all rows are grouped together.

4. Aggregate functions are evaluated.

5. HAVING filters rows after grouping and evaluation of aggregate
functions. Non-window aggregate functions are allowed in this clause.

6. Window functions are evaluated.

7. QUALIFY filters rows after evaluation of window functions. Aggregate
and window functions are allowed in this clause.

8. DISTINCT removes duplicates. If DISTINCT ON is used only the specified
expressions are checked for duplicates; ORDER BY clause, if any, is used
to determine preserved rows. First row is each DISTINCT ON group is
preserved. In absence of ORDER BY preserved rows are not determined,
database may choose any row from each DISTINCT ON group.

9. UNION, EXCEPT, and INTERSECT combine the result of this query with
the results of another query. INTERSECT has higher precedence than

168 of 436

UNION and EXCEPT. Operators with equal precedence are evaluated from
left to right.

10. ORDER BY sorts the result by the given column(s) or expression(s).

11. Number of rows in output can be limited with OFFSET and FETCH
clauses. OFFSET specifies how many rows to skip. Please note that queries
with high offset values can be slow. FETCH FIRST/NEXT limits the number
of rows returned by the query. If PERCENT is specified number of rows is
specified as a percent of the total number of rows and should be an
integer value between 0 and 100 inclusive. WITH TIES can be used only
together with ORDER BY and means that all additional rows that have the
same sorting position as the last row will be also returned.

WINDOW clause specifies window definitions for window functions and
window aggregate functions. This clause can be used to reuse the same
definition in multiple functions.

If FOR UPDATE is specified, the tables or rows are locked for writing. If
some rows are locked by another session, this query will wait some time
for release of these locks, unless NOWAIT or SKIP LOCKED is specified. If
SKIP LOCKED is specified, these locked rows will be excluded from result
of this query. If NOWAIT is specified, presence of these rows will stop
execution of this query immediately. If WAIT with timeout is specified and
some rows are locked by another session, this timeout will be used
instead of default timeout for this session. Please note that with current
implementation the timeout doesn't limit execution time of the whole
query, it only limits wait time for completion of particular transaction that
holds a lock on a row selected by this query.

This clause is not allowed in DISTINCT queries and in queries with non-
window aggregates, GROUP BY, or HAVING clauses. Only the selected
rows are locked as in an UPDATE statement. Rows from the right side of a
left join and from the left side of a right join, including nested joins, aren't
locked. Locking behavior for rows that were excluded from result using
OFFSET / FETCH / LIMIT / TOP or QUALIFY is undefined, to avoid possible
locking of excessive rows try to filter out unneeded rows with the WHERE
criteria when possible. Rows are processed one by one. Each row is read,
tested with WHERE criteria, locked, read again and re-tested, because its
value may be changed by concurrent transaction before lock acquisition.
Note that new uncommitted rows from other transactions are not visible

169 of 436

unless read uncommitted isolation level is used and therefore cannot be
selected and locked. Modified uncommitted rows from other transactions
that satisfy the WHERE criteria cause this SELECT to wait for commit or
rollback of those transactions.

Example:

SELECT * FROM TEST;
SELECT * FROM TEST ORDER BY NAME;
SELECT ID, COUNT(*) FROM TEST GROUP BY ID;
SELECT NAME, COUNT(*) FROM TEST GROUP BY NAME HAVING COUNT(*)
> 2;
SELECT 'ID' COL, MAX(ID) AS MAX FROM TEST UNION SELECT 'NAME',
MAX(NAME) FROM TEST;
SELECT * FROM TEST OFFSET 1000 ROWS FETCH FIRST 1000 ROWS ONLY;
SELECT A, B FROM TEST ORDER BY A FETCH FIRST 10 ROWS WITH TIES;
SELECT * FROM (SELECT ID, COUNT(*) FROM TEST
 GROUP BY ID UNION SELECT NULL, COUNT(*) FROM TEST)
 ORDER BY 1 NULLS LAST;
SELECT DISTINCT C1, C2 FROM TEST;
SELECT DISTINCT ON(C1) C1, C2 FROM TEST ORDER BY C1;
SELECT ID, V FROM TEST WHERE ID IN (1, 2, 3) FOR UPDATE WAIT 0.5;

INSERT

INSERT INTO [schemaName.]tableName [(columnName [,...])]
{ [overrideClause] { insertValues | [DIRECT] query } }
| DEFAULT VALUES

Inserts a new row / new rows into a table.

If column names aren't specified a list of all visible columns in the table is
assumed.

When using DIRECT, then the results from the query are directly applied in
the target table without any intermediate step.

Example:

INSERT INTO TEST VALUES(1, 'Hello')

UPDATE

UPDATE [schemaName.]tableName [[AS] newTableAlias] SET

170 of 436

setClauseList
[WHERE expression] [ORDER BY sortSpecificationList]
FETCH { FIRST | NEXT } [expression] { ROW | ROWS } ONLY

Updates data in a table. ORDER BY is supported for MySQL compatibility,
but it is ignored. If FETCH is specified, at most the specified number of
rows are updated (no limit if null or smaller than zero).

Example:

UPDATE TEST SET NAME='Hi' WHERE ID=1;
UPDATE PERSON P SET NAME=(SELECT A.NAME FROM ADDRESS A WHERE
A.ID=P.ID);

DELETE

DELETE FROM [schemaName.]tableName
[WHERE expression]
FETCH { FIRST | NEXT } [expression] { ROW | ROWS } ONLY

Deletes rows form a table. If FETCH is specified, at most the specified
number of rows are deleted (no limit if null or smaller than zero).

Example:

DELETE FROM TEST WHERE ID=2

BACKUP

BACKUP TO fileNameString

Backs up the database files to a .zip file. Objects are not locked, but the
backup is transactionally consistent because the transaction log is also
copied. Admin rights are required to execute this command.

Example:

BACKUP TO 'backup.zip'

CALL

CALL expression

Calculates a simple expression. This statement returns a result set with
one row, except if the called function returns a result set itself. If the

171 of 436

called function returns an array, then each element in this array is
returned as a column.

Example:

CALL 15*25

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE sqlString

Dynamically prepares and executes the SQL command specified as a
string. Query commands may not be used.

Example:

EXECUTE IMMEDIATE 'ALTER TABLE TEST DROP CONSTRAINT ' ||
 QUOTE_IDENT((SELECT CONSTRAINT_NAME
 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS
 WHERE TABLE_SCHEMA = 'PUBLIC' AND TABLE_NAME = 'TEST'
 AND CONSTRAINT_TYPE = 'UNIQUE'));

EXPLAIN

EXPLAIN { [PLAN FOR] | ANALYZE }
{ query | insert | update | delete | mergeInto | mergeUsing }

Shows the execution plan for a statement. When using EXPLAIN ANALYZE,
the statement is actually executed, and the query plan will include the
actual row scan count for each table.

Example:

EXPLAIN SELECT * FROM TEST WHERE ID=1

MERGE INTO

MERGE INTO [schemaName.]tableName [(columnName [,...])]
[KEY (columnName [,...])]
{ insertValues | query }

Updates existing rows, and insert rows that don't exist. If no key column is
specified, the primary key columns are used to find the row. If more than
one row per new row is affected, an exception is thrown.

Example:

172 of 436

MERGE INTO TEST KEY(ID) VALUES(2, 'World')

MERGE USING

MERGE INTO [schemaName.]targetTableName [[AS] targetAlias]
USING tableExpression
ON expression
mergeWhenClause [,...]

Updates or deletes existing rows, and insert rows that don't exist.

The ON clause specifies the matching column expression.

Different rows from a source table may not match with the same target
row (this is not ensured by H2 if target table is an updatable view). One
source row may be matched with multiple target rows.

If statement doesn't need a source table a DUAL table can be substituted.

Example:

MERGE INTO TARGET_TABLE AS T USING SOURCE_TABLE AS S
 ON T.ID = S.ID
 WHEN MATCHED AND T.COL2 <> 'FINAL' THEN
 UPDATE SET T.COL1 = S.COL1
 WHEN MATCHED AND T.COL2 = 'FINAL' THEN
 DELETE
 WHEN NOT MATCHED THEN
 INSERT (ID, COL1, COL2) VALUES(S.ID, S.COL1, S.COL2);
MERGE INTO TARGET_TABLE AS T USING (SELECT * FROM SOURCE_TABLE)
AS S
 ON T.ID = S.ID
 WHEN MATCHED AND T.COL2 <> 'FINAL' THEN
 UPDATE SET T.COL1 = S.COL1
 WHEN MATCHED AND T.COL2 = 'FINAL' THEN
 DELETE
 WHEN NOT MATCHED THEN
 INSERT VALUES (S.ID, S.COL1, S.COL2);
MERGE INTO TARGET T USING (VALUES (1, 4), (2, 15)) S(ID, V)
 ON T.ID = S.ID
 WHEN MATCHED THEN UPDATE SET V = S.V
 WHEN NOT MATCHED THEN INSERT VALUES (S.ID, S.V);
MERGE INTO TARGET_TABLE USING DUAL ON ID = 1

173 of 436

 WHEN NOT MATCHED THEN INSERT VALUES (1, 'Test')
 WHEN MATCHED THEN UPDATE SET NAME = 'Test';

RUNSCRIPT

RUNSCRIPT FROM fileNameString scriptCompressionEncryption
[CHARSET charsetString]
{ [QUIRKS_MODE] [VARIABLE_BINARY] | FROM_1X }

Runs a SQL script from a file. The script is a text file containing SQL
statements; each statement must end with ';'. This command can be used
to restore a database from a backup. The password must be in single
quotes; it is case sensitive and can contain spaces.

Instead of a file name, a URL may be used. To read a stream from the
classpath, use the prefix 'classpath:'. See the Pluggable File System
section.

The compression algorithm must match the one used when creating the
script. Instead of a file, a URL may be used.

If QUIRKS_MODE is specified, the various compatibility quirks for scripts
from older versions of H2 are enabled. Use this clause when you import
script that was generated by H2 1.4.200 or an older version into more
recent version.

If VARIABLE_BINARY is specified, the BINARY data type will be parsed as
VARBINARY. Use this clause when you import script that was generated by
H2 1.4.200 or an older version into more recent version.

If FROM_1X is specified, quirks for scripts exported from H2 1.*.* are
enabled. Use this flag to populate a new database with the data exported
from 1.*.* versions of H2. This flag also enables QUIRKS_MODE and
VARIABLE_BINARY implicitly.

Admin rights are required to execute this command.

Example:

RUNSCRIPT FROM 'backup.sql'
RUNSCRIPT FROM 'classpath:/com/acme/test.sql'
RUNSCRIPT FROM 'dump_from_1_4_200.sql' FROM_1X

174 of 436

SCRIPT

SCRIPT { [NODATA] | [SIMPLE] [COLUMNS] }
[NOPASSWORDS] [NOSETTINGS]
[DROP] [BLOCKSIZE blockSizeInt]
[TO fileNameString scriptCompressionEncryption
[CHARSET charsetString]]
[TABLE [schemaName.]tableName [, ...]]
[SCHEMA schemaName [, ...]]

Creates a SQL script from the database.

NODATA will not emit INSERT statements. SIMPLE does not use multi-row
insert statements. COLUMNS includes column name lists into insert
statements. If the DROP option is specified, drop statements are created
for tables, views, and sequences. If the block size is set, CLOB and BLOB
values larger than this size are split into separate blocks. BLOCKSIZE is
used when writing out LOB data, and specifies the point at the values
transition from being inserted as inline values, to be inserted using out-of-
line commands. NOSETTINGS turns off dumping the database settings (the
SET XXX commands)

If no 'TO fileName' clause is specified, the script is returned as a result set.
This command can be used to create a backup of the database. For long
term storage, it is more portable than copying the database files.

If a 'TO fileName' clause is specified, then the whole script (including
insert statements) is written to this file, and a result set without the insert
statements is returned.

The password must be in single quotes; it is case sensitive and can
contain spaces.

This command locks objects while it is running. Admin rights are required
to execute this command.

When using the TABLE or SCHEMA option, only the selected table(s) /
schema(s) are included.

Example:

SCRIPT NODATA

175 of 436

SHOW

SHOW { SCHEMAS | TABLES [FROM schemaName] |
COLUMNS FROM tableName [FROM schemaName] }

Lists the schemas, tables, or the columns of a table.

Example:

SHOW TABLES

Explicit table

TABLE [schemaName.]tableName
[ORDER BY selectOrder [,...]]
[OFFSET expression { ROW | ROWS }]
[FETCH { FIRST | NEXT } [expression [PERCENT]] { ROW | ROWS }
{ ONLY | WITH TIES }]

Selects data from a table.

This command is an equivalent to SELECT * FROM tableName. See SELECT
command for description of ORDER BY, OFFSET, and FETCH.

Example:

TABLE TEST;
TABLE TEST ORDER BY ID FETCH FIRST ROW ONLY;

Table value

VALUES rowValueExpression [,...]
[ORDER BY selectOrder [,...]]
[OFFSET expression { ROW | ROWS }]
[FETCH { FIRST | NEXT } [expression [PERCENT]] { ROW | ROWS }
{ ONLY | WITH TIES }]

A list of rows that can be used like a table. See See SELECT command for
description of ORDER BY, OFFSET, and FETCH. The column list of the
resulting table is C1, C2, and so on.

Example:

VALUES (1, 'Hello'), (2, 'World');

176 of 436

WITH

WITH [RECURSIVE] { name [(columnName [,...])] AS (query) [,...] }
query

Can be used to create a recursive or non-recursive query (common table
expression). For recursive queries the first select has to be a UNION. One
or more common table entries can be referred to by name. Column name
declarations are optional - the column names will be inferred from the
named select queries.

Example:

WITH RECURSIVE cte(n) AS (
 SELECT 1
 UNION ALL
 SELECT n + 1
 FROM cte
 WHERE n < 100
)
SELECT sum(n) FROM cte;

Example 2:
WITH cte1 AS (
 SELECT 1 AS FIRST_COLUMN
), cte2 AS (
 SELECT FIRST_COLUMN+1 AS FIRST_COLUMN FROM cte1
)
SELECT sum(FIRST_COLUMN) FROM cte2;

Commands (Data Definition)

ALTER DOMAIN

ALTER DOMAIN [IF EXISTS] [schemaName.]domainName
{ SET DEFAULT expression }
| { DROP DEFAULT }
| { SET ON UPDATE expression }
| { DROP ON UPDATE }

Changes the default or on update expression of a domain. Schema owner
rights are required to execute this command.

177 of 436

SET DEFAULT changes the default expression of a domain.

DROP DEFAULT removes the default expression of a domain. Old
expression is copied into domains and columns that use this domain and
don't have an own default expression.

SET ON UPDATE changes the expression that is set on update if value for
this domain is not specified in update statement.

DROP ON UPDATE removes the expression that is set on update of a
column with this domain. Old expression is copied into domains and
columns that use this domain and don't have an own on update
expression.

This command commits an open transaction in this connection.

Example:

ALTER DOMAIN D1 SET DEFAULT '';
ALTER DOMAIN D1 DROP DEFAULT;
ALTER DOMAIN D1 SET ON UPDATE CURRENT_TIMESTAMP;
ALTER DOMAIN D1 DROP ON UPDATE;

ALTER DOMAIN ADD CONSTRAINT

ALTER DOMAIN [IF EXISTS] [schemaName.]domainName
ADD [constraintNameDefinition]
CHECK (condition) [CHECK | NOCHECK]

Adds a constraint to a domain. Schema owner rights are required to
execute this command. This command commits an open transaction in
this connection.

Example:

ALTER DOMAIN D ADD CONSTRAINT D_POSITIVE CHECK (VALUE > 0)

ALTER DOMAIN DROP CONSTRAINT

ALTER DOMAIN [IF EXISTS] [schemaName.]domainName
DROP CONSTRAINT [IF EXISTS] [schemaName.]constraintName

Removes a constraint from a domain. Schema owner rights are required
to execute this command. This command commits an open transaction in
this connection.

178 of 436

Example:

ALTER DOMAIN D DROP CONSTRAINT D_POSITIVE

ALTER DOMAIN RENAME

ALTER DOMAIN [IF EXISTS] [schemaName.]domainName RENAME TO
newName

Renames a domain. Schema owner rights are required to execute this
command. This command commits an open transaction in this connection.

Example:

ALTER DOMAIN TEST RENAME TO MY_TYPE

ALTER DOMAIN RENAME CONSTRAINT

ALTER DOMAIN [IF EXISTS] [schemaName.]domainName
RENAME CONSTRAINT [schemaName.]oldConstraintName
TO newConstraintName

Renames a constraint. This command commits an open transaction in this
connection.

Example:

ALTER DOMAIN D RENAME CONSTRAINT FOO TO BAR

ALTER INDEX RENAME

ALTER INDEX [IF EXISTS] [schemaName.]indexName RENAME TO
newIndexName

Renames an index. This command commits an open transaction in this
connection.

Example:

ALTER INDEX IDXNAME RENAME TO IDX_TEST_NAME

ALTER SCHEMA RENAME

ALTER SCHEMA [IF EXISTS] schemaName RENAME TO newSchemaName

Renames a schema. Schema admin rights are required to execute this
command. This command commits an open transaction in this connection.

179 of 436

Example:

ALTER SCHEMA TEST RENAME TO PRODUCTION

ALTER SEQUENCE

ALTER SEQUENCE [IF EXISTS] [schemaName.]sequenceName
alterSequenceOption [...]

Changes the parameters of a sequence. Schema owner rights are required
to execute this command. This command does not commit the current
transaction; however the new value is used by other transactions
immediately, and rolling back this command has no effect.

Example:

ALTER SEQUENCE SEQ_ID RESTART WITH 1000

ALTER TABLE ADD

ALTER TABLE [IF EXISTS] [schemaName.]tableName ADD [COLUMN]
{ [IF NOT EXISTS] columnName columnDefinition [USING
initialValueExpression]
| { ({ columnName columnDefinition | tableConstraintDefinition }
[,...]) } }
[{ { BEFORE | AFTER } columnName } | FIRST]

Adds a new column to a table. This command commits an open
transaction in this connection.

If USING is specified the provided expression is used to generate initial
value of the new column for each row. The expression may reference
existing columns of the table. Otherwise the DEFAULT expression is used,
if any. If neither USING nor DEFAULT are specified, the NULL is used.

Example:

ALTER TABLE TEST ADD CREATEDATE TIMESTAMP

ALTER TABLE ADD CONSTRAINT

ALTER TABLE [IF EXISTS] tableName ADD tableConstraintDefinition
[CHECK | NOCHECK]

Adds a constraint to a table. If NOCHECK is specified, existing rows are not
checked for consistency (the default is to check consistency for existing

180 of 436

rows). The required indexes are automatically created if they don't exist
yet. It is not possible to disable checking for unique constraints. This
command commits an open transaction in this connection.

Example:

ALTER TABLE TEST ADD CONSTRAINT NAME_UNIQUE UNIQUE(NAME)

ALTER TABLE RENAME CONSTRAINT

ALTER TABLE [IF EXISTS] [schemaName.]tableName
RENAME CONSTRAINT [schemaName.]oldConstraintName
TO newConstraintName

Renames a constraint. This command commits an open transaction in this
connection.

Example:

ALTER TABLE TEST RENAME CONSTRAINT FOO TO BAR

ALTER TABLE ALTER COLUMN

ALTER TABLE [IF EXISTS] [schemaName.]tableName
ALTER COLUMN [IF EXISTS] columnName
{ { columnDefinition }
| { RENAME TO name }
| SET GENERATED { ALWAYS | BY DEFAULT } [alterIdentityColumnOption
[...]]
| alterIdentityColumnOption [...]
| DROP IDENTITY
| { SELECTIVITY int }
| { SET DEFAULT expression }
| { DROP DEFAULT }
| DROP EXPRESSION
| { SET ON UPDATE expression }
| { DROP ON UPDATE }
| { SET DEFAULT ON NULL }
| { DROP DEFAULT ON NULL }
| { SET NOT NULL }
| { DROP NOT NULL } | { SET NULL }
| { SET DATA TYPE dataTypeOrDomain [USING newValueExpression] }
| { SET { VISIBLE | INVISIBLE } } }

181 of 436

Changes the data type of a column, rename a column, change the identity
value, or change the selectivity.

Changing the data type fails if the data can not be converted.

SET GENERATED ALWAYS, SET GENERATED BY DEFAULT, or identity
options convert the column into identity column (if it wasn't an identity
column) and set new values of specified options for its sequence.

DROP IDENTITY removes identity status of a column.

SELECTIVITY sets the selectivity (1-100) for a column. Setting the
selectivity to 0 means the default value. Selectivity is used by the cost
based optimizer to calculate the estimated cost of an index. Selectivity
100 means values are unique, 10 means every distinct value appears 10
times on average.

SET DEFAULT changes the default value of a column. This command
doesn't affect generated and identity columns.

DROP DEFAULT removes the default value of a column.

DROP EXPRESSION converts generated column into base column.

SET ON UPDATE changes the value that is set on update if value for this
column is not specified in update statement. This command doesn't affect
generated and identity columns.

DROP ON UPDATE removes the value that is set on update of a column.

SET DEFAULT ON NULL makes NULL value work as DEFAULT value is
assignments to this column.

DROP DEFAULT ON NULL makes NULL value work as NULL value in
assignments to this column.

SET NOT NULL sets a column to not allow NULL. Rows may not contain
NULL in this column.

DROP NOT NULL and SET NULL set a column to allow NULL. The column
may not be part of a primary key and may not be an identity column.

SET DATA TYPE changes the data type of a column, for each row old value
is converted to this data type unless USING is specified with a custom
expression. USING expression may reference previous value of the
modified column by its name and values of other columns.

182 of 436

SET INVISIBLE makes the column hidden, i.e. it will not appear in SELECT *
results. SET VISIBLE has the reverse effect.

This command commits an open transaction in this connection.

Example:

ALTER TABLE TEST ALTER COLUMN NAME CLOB;
ALTER TABLE TEST ALTER COLUMN NAME RENAME TO TEXT;
ALTER TABLE TEST ALTER COLUMN ID RESTART WITH 10000;
ALTER TABLE TEST ALTER COLUMN NAME SELECTIVITY 100;
ALTER TABLE TEST ALTER COLUMN NAME SET DEFAULT '';
ALTER TABLE TEST ALTER COLUMN NAME SET NOT NULL;
ALTER TABLE TEST ALTER COLUMN NAME SET NULL;
ALTER TABLE TEST ALTER COLUMN NAME SET VISIBLE;
ALTER TABLE TEST ALTER COLUMN NAME SET INVISIBLE;

ALTER TABLE DROP COLUMN

ALTER TABLE [IF EXISTS] [schemaName.]tableName
DROP [COLUMN] [IF EXISTS]
{ (columnName [,...]) } | columnName [,...]

Removes column(s) from a table. This command commits an open
transaction in this connection.

Example:

ALTER TABLE TEST DROP COLUMN NAME
ALTER TABLE TEST DROP COLUMN (NAME1, NAME2)

ALTER TABLE DROP CONSTRAINT

ALTER TABLE [IF EXISTS] [schemaName.]tableName DROP
CONSTRAINT [IF EXISTS] [schemaName.]constraintName [RESTRICT |
CASCADE] | { PRIMARY KEY }

Removes a constraint or a primary key from a table. If CASCADE is
specified, unique or primary key constraint is dropped together with all
referential constraints that reference the specified constraint. This
command commits an open transaction in this connection.

Example:

ALTER TABLE TEST DROP CONSTRAINT UNIQUE_NAME RESTRICT

183 of 436

ALTER TABLE SET

ALTER TABLE [IF EXISTS] [schemaName.]tableName
SET REFERENTIAL_INTEGRITY
{ FALSE | TRUE } [CHECK | NOCHECK]

Disables or enables referential integrity checking for a table. This
command can be used inside a transaction. Enabling referential integrity
does not check existing data, except if CHECK is specified. Use SET
REFERENTIAL_INTEGRITY to disable it for all tables; the global flag and the
flag for each table are independent.

This command commits an open transaction in this connection.

Example:

ALTER TABLE TEST SET REFERENTIAL_INTEGRITY FALSE

ALTER TABLE RENAME

ALTER TABLE [IF EXISTS] [schemaName.]tableName RENAME TO
newName

Renames a table. This command commits an open transaction in this
connection.

Example:

ALTER TABLE TEST RENAME TO MY_DATA

ALTER USER ADMIN

ALTER USER userName ADMIN { TRUE | FALSE }

Switches the admin flag of a user on or off.

Only unquoted or uppercase user names are allowed. Admin rights are
required to execute this command. This command commits an open
transaction in this connection.

Example:

ALTER USER TOM ADMIN TRUE

ALTER USER RENAME

ALTER USER userName RENAME TO newUserName

184 of 436

Renames a user. After renaming a user, the password becomes invalid
and needs to be changed as well.

Only unquoted or uppercase user names are allowed. Admin rights are
required to execute this command. This command commits an open
transaction in this connection.

Example:

ALTER USER TOM RENAME TO THOMAS

ALTER USER SET PASSWORD

ALTER USER userName SET { PASSWORD string | SALT bytes HASH
bytes }

Changes the password of a user. Only unquoted or uppercase user names
are allowed. The password must be enclosed in single quotes. It is case
sensitive and can contain spaces. The salt and hash values are hex
strings.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

ALTER USER SA SET PASSWORD 'rioyxlgt'

ALTER VIEW RECOMPILE

ALTER VIEW [IF EXISTS] [schemaName.]viewName RECOMPILE

Recompiles a view after the underlying tables have been changed or
created. Schema owner rights are required to execute this command. This
command is used for views created using CREATE FORCE VIEW. This
command commits an open transaction in this connection.

Example:

ALTER VIEW ADDRESS_VIEW RECOMPILE

ALTER VIEW RENAME

ALTER VIEW [IF EXISTS] [schemaName.]viewName RENAME TO
newName

185 of 436

Renames a view. Schema owner rights are required to execute this
command. This command commits an open transaction in this connection.

Example:

ALTER VIEW TEST RENAME TO MY_VIEW

ANALYZE

ANALYZE [TABLE [schemaName.]tableName] [SAMPLE_SIZE
rowCountInt]

Updates the selectivity statistics of tables. If no table name is given, all
tables are analyzed. The selectivity is used by the cost based optimizer to
select the best index for a given query. If no sample size is set, up to
10000 rows per table are read. The value 0 means all rows are read. The
selectivity can be set manually using ALTER TABLE ALTER COLUMN
SELECTIVITY. Manual values are overwritten by this statement. The
selectivity is available in the INFORMATION_SCHEMA.COLUMNS table.

This command commits an open transaction in this connection.

Example:

ANALYZE SAMPLE_SIZE 1000

COMMENT ON

COMMENT ON
{ { COLUMN [schemaName.]tableName.columnName }
| { { TABLE | VIEW | CONSTANT | CONSTRAINT | ALIAS | INDEX | ROLE
| SCHEMA | SEQUENCE | TRIGGER | USER | DOMAIN }
[schemaName.]objectName } }
IS expression

Sets the comment of a database object. Use NULL or empty string to
remove the comment.

Admin rights are required to execute this command if object is a USER or
ROLE. Schema owner rights are required to execute this command for all
other types of objects. This command commits an open transaction in this
connection.

Example:

COMMENT ON TABLE TEST IS 'Table used for testing'

186 of 436

CREATE AGGREGATE

CREATE AGGREGATE [IF NOT EXISTS] [schemaName.]aggregateName
FOR classNameString

Creates a new user-defined aggregate function. The method name must
be the full qualified class name. The class must implement the interface
org.h2.api.Aggregate or org.h2.api.AggregateFunction.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

CREATE AGGREGATE SIMPLE_MEDIAN FOR 'com.acme.db.Median'

CREATE ALIAS

CREATE ALIAS [IF NOT EXISTS] [schemaName.]functionAliasName
[DETERMINISTIC]
{ FOR classAndMethodString | AS sourceCodeString }

Creates a new function alias. If this is a ResultSet returning function, by
default the return value is cached in a local temporary file.

DETERMINISTIC - Deterministic functions must always return the same
value for the same parameters.

The method name must be the full qualified class and method name, and
may optionally include the parameter classes as in
java.lang.Integer.parseInt(java.lang.String, int). The class and the method
must both be public, and the method must be static. The class must be
available in the classpath of the database engine (when using the server
mode, it must be in the classpath of the server).

When defining a function alias with source code, the Sun javac is compiler
is used if the file tools.jar is in the classpath. If not, javac is run as a
separate process. Only the source code is stored in the database; the
class is compiled each time the database is re-opened. Source code is
usually passed as dollar quoted text to avoid escaping problems. If import
statements are used, then the tag @CODE must be added before the
method.

187 of 436

If the method throws an SQLException, it is directly re-thrown to the
calling application; all other exceptions are first converted to a
SQLException.

If the first parameter of the Java function is a java.sql.Connection, then a
connection to the database is provided. This connection must not be
closed. If the class contains multiple methods with the given name but
different parameter count, all methods are mapped.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

If you have the Groovy jar in your classpath, it is also possible to write
methods using Groovy.

Example:

CREATE ALIAS MY_SQRT FOR 'java.lang.Math.sqrt';
CREATE ALIAS MY_ROUND FOR 'java.lang.Math.round(double)';
CREATE ALIAS GET_SYSTEM_PROPERTY FOR
'java.lang.System.getProperty';
CALL GET_SYSTEM_PROPERTY('java.class.path');
CALL GET_SYSTEM_PROPERTY('com.acme.test', 'true');
CREATE ALIAS REVERSE AS 'String reverse(String s) { return new
StringBuilder(s).reverse().toString(); }';
CALL REVERSE('Test');
CREATE ALIAS tr AS '@groovy.transform.CompileStatic
 static String tr(String str, String sourceSet, String replacementSet){
 return str.tr(sourceSet, replacementSet);
 }
'

CREATE CONSTANT

CREATE CONSTANT [IF NOT EXISTS] [schemaName.]constantName
VALUE expression

Creates a new constant. Schema owner rights are required to execute this
command. This command commits an open transaction in this connection.

Example:

CREATE CONSTANT ONE VALUE 1

188 of 436

CREATE DOMAIN

CREATE DOMAIN [IF NOT EXISTS] [schemaName.]domainName
[AS] dataTypeOrDomain
[DEFAULT expression]
[ON UPDATE expression]
[COMMENT expression]
[CHECK (condition)] [...]

Creates a new domain to define a set of permissible values. Schema
owner rights are required to execute this command. Domains can be used
as data types. The domain constraints must evaluate to TRUE or to
UNKNOWN. In the conditions, the term VALUE refers to the value being
tested.

This command commits an open transaction in this connection.

Example:

CREATE DOMAIN EMAIL AS VARCHAR(255) CHECK (POSITION('@', VALUE)
> 1)

CREATE INDEX

CREATE [UNIQUE [nullsDistinct] | SPATIAL] INDEX
[[IF NOT EXISTS] [schemaName.]indexName]
ON [schemaName.]tableName (indexColumn [,...])
[INCLUDE (indexColumn [,...])]

Creates a new index. This command commits an open transaction in this
connection.

INCLUDE clause may only be specified for UNIQUE indexes. With this
clause additional columns are included into index, but aren't used in
unique checks. If nulls distinct clause is not specified, the default is NULLS
DISTINCT, excluding some compatibility modes.

Spatial indexes are supported only on GEOMETRY columns. They may
contain only one column and are used by the spatial overlapping operator.

Example:

CREATE INDEX IDXNAME ON TEST(NAME)

189 of 436

CREATE LINKED TABLE

CREATE [FORCE] [[GLOBAL | LOCAL] TEMPORARY]
LINKED TABLE [IF NOT EXISTS]
[schemaName.]tableName (driverString, urlString, userString,
passwordString,
[originalSchemaString,] originalTableString)
[EMIT UPDATES | READONLY] [FETCH_SIZE sizeInt] [AUTOCOMMIT ON|
OFF]

Creates a table link to an external table. The driver name may be empty if
the driver is already loaded. If the schema name is not set, only one table
with that name may exist in the target database.

FORCE - Create the LINKED TABLE even if the remote database/table does
not exist.

EMIT UPDATES - Usually, for update statements, the old rows are deleted
first and then the new rows are inserted. It is possible to emit update
statements (except on rollback), however in this case multi-row unique
key updates may not always work. Linked tables to the same database
share one connection.

READONLY - is set, the remote table may not be updated. This is enforced
by H2.

FETCH_SIZE - the number of rows fetched, a hint with non-negative
number of rows to fetch from the external table at once, may be ignored
by the driver of external database. 0 is default and means no hint. The
value is passed to java.sql.Statement.setFetchSize() method.

AUTOCOMMIT - is set to ON, the auto-commit mode is enable. OFF is
disable. The value is passed to java.sql.Connection.setAutoCommit()
method.

If the connection to the source database is lost, the connection is re-
opened (this is a workaround for MySQL that disconnects after 8 hours of
inactivity by default).

If a query is used instead of the original table name, the table is read only.
Queries must be enclosed in parenthesis: (SELECT * FROM ORDERS).

To use JNDI to get the connection, the driver class must be a
javax.naming.Context (for example javax.naming.InitialContext), and the
URL must be the resource name (for example java:comp/env/jdbc/Test).

190 of 436

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

CREATE LINKED TABLE LINK('org.h2.Driver', 'jdbc:h2:./test2',
 'sa', 'sa', 'TEST');
CREATE LINKED TABLE LINK('', 'jdbc:h2:./test2', 'sa', 'sa',
 '(SELECT * FROM TEST WHERE ID>0)');
CREATE LINKED TABLE LINK('javax.naming.InitialContext',
 'java:comp/env/jdbc/Test', NULL, NULL,
 '(SELECT * FROM TEST WHERE ID>0)');

CREATE ROLE

CREATE ROLE [IF NOT EXISTS] newRoleName

Creates a new role. This command commits an open transaction in this
connection.

Example:

CREATE ROLE READONLY

CREATE SCHEMA

CREATE SCHEMA [IF NOT EXISTS]
{ name [AUTHORIZATION ownerName] | [AUTHORIZATION
ownerName] }
[WITH tableEngineParamName [,...]]

Creates a new schema. Schema admin rights are required to execute this
command.

If schema name is not specified, the owner name is used as a schema
name. If schema name is specified, but no owner is specified, the current
user is used as an owner.

Schema owners can create, rename, and drop objects in the schema.
Schema owners can drop the schema itself, but cannot rename it. Some
objects may still require admin rights for their creation, see
documentation of their CREATE statements for details.

Optional table engine parameters are used when CREATE TABLE
command is run on this schema without having its engine params set.

191 of 436

This command commits an open transaction in this connection.

Example:

CREATE SCHEMA TEST_SCHEMA AUTHORIZATION SA

CREATE SEQUENCE

CREATE SEQUENCE [IF NOT EXISTS] [schemaName.]sequenceName
[{ AS dataType | sequenceOption } [...]]

Creates a new sequence. Schema owner rights are required to execute
this command.

The data type of a sequence must be a numeric type, the default is
BIGINT. Sequence can produce only integer values. For TINYINT the
allowed values are between -128 and 127. For SMALLINT the allowed
values are between -32768 and 32767. For INTEGER the allowed values
are between -2147483648 and 2147483647. For BIGINT the allowed
values are between -9223372036854775808 and 9223372036854775807.
For NUMERIC and DECFLOAT the allowed values depend on precision, but
cannot exceed the range of BIGINT data type (from -
9223372036854775808 to 9223372036854775807); the scale of
NUMERIC must be 0. For REAL the allowed values are between -16777216
and 16777216. For DOUBLE PRECISION the allowed values are between -
9007199254740992 and 9007199254740992.

Used values are never re-used, even when the transaction is rolled back.

This command commits an open transaction in this connection.

Example:

CREATE SEQUENCE SEQ_ID;
CREATE SEQUENCE SEQ2 AS INTEGER START WITH 10;

CREATE TABLE

CREATE [CACHED | MEMORY] [{ TEMP } | [GLOBAL | LOCAL]
TEMPORARY]
TABLE [IF NOT EXISTS] [schemaName.]tableName
[({ columnName [columnDefinition] | tableConstraintDefinition } [,...])]
[ENGINE tableEngineName]
[WITH tableEngineParamName [,...]]
[NOT PERSISTENT] [TRANSACTIONAL]

192 of 436

[AS (query) [WITH [NO] DATA]]

Creates a new table.

Admin rights are required to execute this command if and only if ENGINE
option is used or custom default table engine is configured in the
database. Schema owner rights or ALTER ANY SCHEMA rights are required
for creation of regular tables and GLOBAL TEMPORARY tables.

Cached tables (the default for regular tables) are persistent, and the
number of rows is not limited by the main memory. Memory tables (the
default for temporary tables) are persistent, but the index data is kept in
main memory, that means memory tables should not get too large.

Temporary tables are deleted when closing or opening a database.
Temporary tables can be global (accessible by all connections) or local
(only accessible by the current connection). The default for temporary
tables is global. Indexes of temporary tables are kept fully in main
memory, unless the temporary table is created using CREATE CACHED
TABLE.

The ENGINE option is only required when custom table implementations
are used. The table engine class must implement the interface
org.h2.api.TableEngine. Any table engine parameters are passed down in
the tableEngineParams field of the CreateTableData object.

Either ENGINE, or WITH (table engine params), or both may be specified. If
ENGINE is not specified in CREATE TABLE, then the engine specified by
DEFAULT_TABLE_ENGINE option of database params is used.

Tables with the NOT PERSISTENT modifier are kept fully in memory, and
all rows are lost when the database is closed.

The column definitions are optional if a query is specified. In that case the
column list of the query is used. If the query is specified its results are
inserted into created table unless WITH NO DATA is specified.

This command commits an open transaction, except when using
TRANSACTIONAL (only supported for temporary tables).

Example:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255))

193 of 436

CREATE TRIGGER

CREATE TRIGGER [IF NOT EXISTS] [schemaName.]triggerName
{ BEFORE | AFTER | INSTEAD OF }
{ INSERT | UPDATE | DELETE | { SELECT | ROLLBACK } }
[,...] ON [schemaName.]tableName [FOR EACH { ROW | STATEMENT }]
[QUEUE int] [NOWAIT]
{ CALL triggeredClassNameString | AS sourceCodeString }

Creates a new trigger. Admin rights are required to execute this
command.

The trigger class must be public and implement org.h2.api.Trigger. Inner
classes are not supported. The class must be available in the classpath of
the database engine (when using the server mode, it must be in the
classpath of the server).

The sourceCodeString must define a single method with no parameters
that returns org.h2.api.Trigger. See CREATE ALIAS for requirements
regarding the compilation. Alternatively, javax.script.ScriptEngineManager
can be used to create an instance of org.h2.api.Trigger. Currently
JavaScript (included in older JREs or provided by org.graalvm.js:js-
scriptengine library in newer JREs) and ruby (with JRuby) are supported. In
that case the source must begin respectively with //javascript or #ruby.

BEFORE triggers are called after data conversion is made, default values
are set, null and length constraint checks have been made; but before
other constraints have been checked. If there are multiple triggers, the
order in which they are called is undefined.

ROLLBACK can be specified in combination with INSERT, UPDATE, and
DELETE. Only row based AFTER trigger can be called on ROLLBACK.
Exceptions that occur within such triggers are ignored. As the operations
that occur within a trigger are part of the transaction, ROLLBACK triggers
are only required if an operation communicates outside of the database.

INSTEAD OF triggers are implicitly row based and behave like BEFORE
triggers. Only the first such trigger is called. Such triggers on views are
supported. They can be used to make views updatable. These triggers on
INSERT and UPDATE must update the passed new row to values that were
actually inserted by the trigger; they are used for FINAL TABLE and for
retrieval of generated keys.

194 of 436

A BEFORE SELECT trigger is fired just before the database engine tries to
read from the table. The trigger can be used to update a table on demand.
The trigger is called with both 'old' and 'new' set to null.

The MERGE statement will call both INSERT and UPDATE triggers. Not
supported are SELECT triggers with the option FOR EACH ROW, and AFTER
SELECT triggers.

Committing or rolling back a transaction within a trigger is not allowed,
except for SELECT triggers.

By default a trigger is called once for each statement, without the old and
new rows. FOR EACH ROW triggers are called once for each inserted,
updated, or deleted row.

QUEUE is implemented for syntax compatibility with HSQL and has no
effect.

The trigger need to be created in the same schema as the table. The
schema name does not need to be specified when creating the trigger.

This command commits an open transaction in this connection.

Example:

CREATE TRIGGER TRIG_INS BEFORE INSERT ON TEST FOR EACH ROW CALL
'MyTrigger';
CREATE TRIGGER TRIG_SRC BEFORE INSERT ON TEST AS
 'org.h2.api.Trigger create() { return new
MyTrigger("constructorParam"); }';
CREATE TRIGGER TRIG_JS BEFORE INSERT ON TEST AS '//javascript
return new (Java.type("org.example.MyTrigger"))("constructorParam");';
CREATE TRIGGER TRIG_RUBY BEFORE INSERT ON TEST AS '#ruby
Java::MyPackage::MyTrigger.new("constructorParam")';

CREATE USER

CREATE USER [IF NOT EXISTS] newUserName
{ PASSWORD string | SALT bytes HASH bytes } [ADMIN]

Creates a new user. For compatibility, only unquoted or uppercase user
names are allowed. The password must be in single quotes. It is case
sensitive and can contain spaces. The salt and hash values are hex
strings.

195 of 436

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

CREATE USER GUEST PASSWORD 'abc'

CREATE VIEW

CREATE [OR REPLACE] [FORCE]
VIEW [IF NOT EXISTS] [schemaName.]viewName
[(columnName [,...])] AS query

Creates a new view. If the force option is used, then the view is created
even if the underlying table(s) don't exist. Schema owner rights are
required to execute this command.

If the OR REPLACE clause is used an existing view will be replaced, and
any dependent views will not need to be recreated. If dependent views will
become invalid as a result of the change an error will be generated, but
this error can be ignored if the FORCE clause is also used.

Views are not updatable except when using 'instead of' triggers.

This command commits an open transaction in this connection.

Example:

CREATE VIEW TEST_VIEW AS SELECT * FROM TEST WHERE ID < 100

CREATE MATERIALIZED VIEW

CREATE [OR REPLACE]
MATERIALIZED VIEW [IF NOT EXISTS] [schemaName.]viewName
[(columnName [,...])] AS query

Creates a new materialized view. Schema owner rights are required to
execute this command.

If the OR REPLACE clause is used an existing view will be replaced.

Views are not updatable except using REFRESH MATERIALIZED VIEW.

This command commits an open transaction in this connection.

Example:

196 of 436

CREATE MATERIALIZED VIEW TEST_VIEW AS SELECT * FROM TEST WHERE
ID < 100

DROP AGGREGATE

DROP AGGREGATE [IF EXISTS] aggregateName

Drops an existing user-defined aggregate function. Schema owner rights
are required to execute this command.

This command commits an open transaction in this connection.

Example:

DROP AGGREGATE SIMPLE_MEDIAN

DROP ALIAS

DROP ALIAS [IF EXISTS] [schemaName.]aliasName

Drops an existing function alias. Schema owner rights are required to
execute this command.

This command commits an open transaction in this connection.

Example:

DROP ALIAS MY_SQRT

DROP ALL OBJECTS

DROP ALL OBJECTS [DELETE FILES]

Drops all existing views, tables, sequences, schemas, function aliases,
roles, user-defined aggregate functions, domains, and users (except the
current user). If DELETE FILES is specified, the database files will be
removed when the last user disconnects from the database. Warning: this
command can not be rolled back.

Admin rights are required to execute this command.

Example:

DROP ALL OBJECTS

197 of 436

DROP CONSTANT

DROP CONSTANT [IF EXISTS] [schemaName.]constantName

Drops a constant. Schema owner rights are required to execute this
command. This command commits an open transaction in this connection.

Example:

DROP CONSTANT ONE

DROP DOMAIN

DROP DOMAIN [IF EXISTS] [schemaName.]domainName [RESTRICT |
CASCADE]

Drops a data type (domain). Schema owner rights are required to execute
this command.

The command will fail if it is referenced by a column or another domain
(the default). Column descriptors are replaced with original definition of
specified domain if the CASCADE clause is used. Default and on update
expressions are copied into domains and columns that use this domain
and don't have own expressions. Domain constraints are copied into
domains that use this domain and to columns (as check constraints) that
use this domain. This command commits an open transaction in this
connection.

Example:

DROP DOMAIN EMAIL

DROP INDEX

DROP INDEX [IF EXISTS] [schemaName.]indexName

Drops an index. This command commits an open transaction in this
connection.

Example:

DROP INDEX IF EXISTS IDXNAME

DROP ROLE

DROP ROLE [IF EXISTS] roleName

198 of 436

Drops a role. Admin rights are required to execute this command. This
command commits an open transaction in this connection.

Example:

DROP ROLE READONLY

DROP SCHEMA

DROP SCHEMA [IF EXISTS] schemaName [RESTRICT | CASCADE]

Drops a schema. Schema owner rights are required to execute this
command. The command will fail if objects in this schema exist and the
RESTRICT clause is used (the default). All objects in this schema are
dropped as well if the CASCADE clause is used. This command commits an
open transaction in this connection.

Example:

DROP SCHEMA TEST_SCHEMA

DROP SEQUENCE

DROP SEQUENCE [IF EXISTS] [schemaName.]sequenceName

Drops a sequence. Schema owner rights are required to execute this
command. This command commits an open transaction in this connection.

Example:

DROP SEQUENCE SEQ_ID

DROP TABLE

DROP TABLE [IF EXISTS] [schemaName.]tableName [,...]
[RESTRICT | CASCADE]

Drops an existing table, or a list of tables. The command will fail if
dependent objects exist and the RESTRICT clause is used (the default). All
dependent views and constraints are dropped as well if the CASCADE
clause is used. This command commits an open transaction in this
connection.

Example:

DROP TABLE TEST

199 of 436

DROP TRIGGER

DROP TRIGGER [IF EXISTS] [schemaName.]triggerName

Drops an existing trigger. This command commits an open transaction in
this connection.

Example:

DROP TRIGGER TRIG_INS

DROP USER

DROP USER [IF EXISTS] userName

Drops a user. The current user cannot be dropped. For compatibility, only
unquoted or uppercase user names are allowed.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

DROP USER TOM

DROP VIEW

DROP VIEW [IF EXISTS] [schemaName.]viewName [RESTRICT |
CASCADE]

Drops an existing view. Schema owner rights are required to execute this
command. All dependent views are dropped as well if the CASCADE clause
is used (the default). The command will fail if dependent views exist and
the RESTRICT clause is used. This command commits an open transaction
in this connection.

Example:

DROP VIEW TEST_VIEW

DROP MATERIALIZED VIEW

DROP MATERIALIZED VIEW [IF EXISTS] [schemaName.]viewName

200 of 436

Drops an existing materialized view. Schema owner rights are required to
execute this command. This command commits an open transaction in
this connection.

Example:

DROP MATERIALIZED VIEW TEST_VIEW

REFRESH MATERIALIZED VIEW

REFRESH MATERIALIZED VIEW [IF EXISTS] [schemaName.]viewName

Recreates an existing materialized view. Schema owner rights are
required to execute this command. This command commits an open
transaction in this connection.

Example:

REFRESH MATERIALIZED VIEW TEST_VIEW

TRUNCATE TABLE

TRUNCATE TABLE [schemaName.]tableName [[CONTINUE | RESTART]
IDENTITY]

Removes all rows from a table. Unlike DELETE FROM without where
clause, this command can not be rolled back. This command is faster than
DELETE without where clause. Only regular data tables without foreign
key constraints can be truncated (except if referential integrity is disabled
for this database or for this table). Linked tables can't be truncated. If
RESTART IDENTITY is specified next values for identity columns are
restarted.

This command commits an open transaction in this connection.

Example:

TRUNCATE TABLE TEST

Commands (Other)

CHECKPOINT

CHECKPOINT

Flushes the data to disk.
201 of 436

Admin rights are required to execute this command.

Example:

CHECKPOINT

CHECKPOINT SYNC

CHECKPOINT SYNC

Flushes the data to disk and forces all system buffers be written to the
underlying device.

Admin rights are required to execute this command.

Example:

CHECKPOINT SYNC

COMMIT

COMMIT [WORK]

Commits a transaction.

Example:

COMMIT

COMMIT TRANSACTION

COMMIT TRANSACTION transactionName

Sets the resolution of an in-doubt transaction to 'commit'.

Admin rights are required to execute this command. This command is part
of the 2-phase-commit protocol.

Example:

COMMIT TRANSACTION XID_TEST

GRANT RIGHT

GRANT { { SELECT | INSERT | UPDATE | DELETE } [,..] | ALL
[PRIVILEGES] } ON
{ { SCHEMA schemaName } | { [TABLE] [schemaName.]tableName [,...]
} }

202 of 436

TO { PUBLIC | userName | roleName }

Grants rights for a table to a user or role.

Schema owner rights are required to execute this command. This
command commits an open transaction in this connection.

Example:

GRANT SELECT ON TEST TO READONLY

GRANT ALTER ANY SCHEMA

GRANT ALTER ANY SCHEMA TO userName

Grant schema admin rights to a user.

Schema admin can create, rename, or drop schemas and also has schema
owner rights in every schema.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

GRANT ALTER ANY SCHEMA TO Bob

GRANT ROLE

GRANT { roleName [,...] } TO { PUBLIC | userName | roleName }

Grants a role to a user or role.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

GRANT READONLY TO PUBLIC

HELP

HELP [anything [...]]

Displays the help pages of SQL commands or keywords.

Example:

HELP SELECT
203 of 436

PREPARE COMMIT

PREPARE COMMIT newTransactionName

Prepares committing a transaction. This command is part of the 2-phase-
commit protocol.

Example:

PREPARE COMMIT XID_TEST

REVOKE RIGHT

REVOKE { { SELECT | INSERT | UPDATE | DELETE } [,..] | ALL [PRIVILEGES
] } ON
{ { SCHEMA schemaName } | { [TABLE] [schemaName.]tableName [,...]
} }
FROM { PUBLIC | userName | roleName }

Removes rights for a table from a user or role.

Schema owner rights are required to execute this command. This
command commits an open transaction in this connection.

Example:

REVOKE SELECT ON TEST FROM READONLY

REVOKE ALTER ANY SCHEMA

REVOKE ALTER ANY SCHEMA FROM userName

Removes schema admin rights from a user.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

GRANT ALTER ANY SCHEMA TO Bob

REVOKE ROLE

REVOKE { roleName [,...] } FROM { PUBLIC | userName | roleName }

Removes a role from a user or role.

204 of 436

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

REVOKE READONLY FROM TOM

ROLLBACK

ROLLBACK [WORK] [TO SAVEPOINT savepointName]

Rolls back a transaction. If a savepoint name is used, the transaction is
only rolled back to the specified savepoint.

Example:

ROLLBACK

ROLLBACK TRANSACTION

ROLLBACK TRANSACTION transactionName

Sets the resolution of an in-doubt transaction to 'rollback'.

Admin rights are required to execute this command. This command is part
of the 2-phase-commit protocol.

Example:

ROLLBACK TRANSACTION XID_TEST

SAVEPOINT

SAVEPOINT savepointName

Create a new savepoint. See also ROLLBACK. Savepoints are only valid
until the transaction is committed or rolled back.

Example:

SAVEPOINT HALF_DONE

SET @

SET @variableName [=] expression

Updates a user-defined variable. Variables are not persisted and session
scoped, that means only visible from within the session in which they are

205 of 436

defined. This command does not commit a transaction, and rollback does
not affect it.

Example:

SET @TOTAL=0

SET ALLOW_LITERALS

SET ALLOW_LITERALS { NONE | ALL | NUMBERS }

This setting can help solve the SQL injection problem. By default, text and
number literals are allowed in SQL statements. However, this enables SQL
injection if the application dynamically builds SQL statements. SQL
injection is not possible if user data is set using parameters ('?').

NONE means literals of any kind are not allowed, only parameters and
constants are allowed. NUMBERS mean only numerical and boolean
literals are allowed. ALL means all literals are allowed (default).

See also CREATE CONSTANT.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. This setting can be appended to the
database URL: jdbc:h2:./test;ALLOW_LITERALS=NONE

Example:

SET ALLOW_LITERALS NONE

SET AUTOCOMMIT

SET AUTOCOMMIT { TRUE | ON | FALSE | OFF }

Switches auto commit on or off. This setting can be appended to the
database URL: jdbc:h2:./test;AUTOCOMMIT=OFF - however this will not
work as expected when using a connection pool (the connection pool
manager will re-enable autocommit when returning the connection to the
pool, so autocommit will only be disabled the first time the connection is
used.

Example:

SET AUTOCOMMIT OFF

206 of 436

SET CACHE_SIZE

SET CACHE_SIZE int

Sets the size of the cache in KB (each KB being 1024 bytes) for the current
database. The default is 65536 per available GB of RAM, i.e. 64 MB per
GB. The value is rounded to the next higher power of two. Depending on
the virtual machine, the actual memory required may be higher.

This setting is persistent and affects all connections as there is only one
cache per database. Using a very small value (specially 0) will reduce
performance a lot. This setting only affects the database engine (the
server in a client/server environment; in embedded mode, the database
engine is in the same process as the application). It has no effect for in-
memory databases.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. This setting can be appended to the
database URL: jdbc:h2:./test;CACHE_SIZE=8192

Example:

SET CACHE_SIZE 8192

SET CLUSTER

SET CLUSTER serverListString

This command should not be used directly by an application, the
statement is executed automatically by the system. The behavior may
change in future releases. Sets the cluster server list. An empty string
switches off the cluster mode. Switching on the cluster mode requires
admin rights, but any user can switch it off (this is automatically done
when the client detects the other server is not responding).

This command is effective immediately, but does not commit an open
transaction.

Example:

SET CLUSTER ''

207 of 436

SET BUILTIN_ALIAS_OVERRIDE

SET BUILTIN_ALIAS_OVERRIDE { TRUE | FALSE }

Allows the overriding of the builtin system date/time functions for unit
testing purposes.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

SET BUILTIN_ALIAS_OVERRIDE TRUE

SET CATALOG

SET CATALOG { catalogString | { catalogName } }

This command has no effect if the specified name matches the name of
the database, otherwise it throws an exception.

This command does not commit a transaction.

Example:

SET CATALOG 'DB'
SET CATALOG DB_NAME

SET COLLATION

SET [DATABASE] COLLATION
{ OFF | collationName
[STRENGTH { PRIMARY | SECONDARY | TERTIARY | IDENTICAL }] }

Sets the collation used for comparing strings. This command can only be
executed if there are no tables defined. See java.text.Collator for details
about the supported collations and the STRENGTH (PRIMARY is usually
case- and umlaut-insensitive; SECONDARY is case-insensitive but umlaut-
sensitive; TERTIARY is both case- and umlaut-sensitive; IDENTICAL is
sensitive to all differences and only affects ordering).

The ICU4J collator is used if it is in the classpath. It is also used if the
collation name starts with ICU4J_ (in that case, the ICU4J must be in the
classpath, otherwise an exception is thrown). The default collator is used if
the collation name starts with DEFAULT_ (even if ICU4J is in the classpath).

208 of 436

The charset collator is used if the collation name starts with CHARSET_
(e.g. CHARSET_CP500). This collator sorts strings according to the binary
representation in the given charset.

Admin rights are required to execute this command. This command
commits an open transaction in this connection. This setting is persistent.
This setting can be appended to the database URL:
jdbc:h2:./test;COLLATION='ENGLISH'

Example:

SET COLLATION ENGLISH
SET COLLATION CHARSET_CP500

SET DATABASE_EVENT_LISTENER

SET DATABASE_EVENT_LISTENER classNameString

Sets the event listener class. An empty string ('') means no listener should
be used. This setting is not persistent.

Admin rights are required to execute this command, except if it is set
when opening the database (in this case it is reset just after opening the
database). This setting can be appended to the database URL:
jdbc:h2:./test;DATABASE_EVENT_LISTENER='sample.MyListener'

Example:

SET DATABASE_EVENT_LISTENER 'sample.MyListener'

SET DB_CLOSE_DELAY

SET DB_CLOSE_DELAY int

Sets the delay for closing a database if all connections are closed. The
value -1 means the database is never closed until the close delay is set to
some other value or SHUTDOWN is called. The value 0 means no delay
(default; the database is closed if the last connection to it is closed).
Values 1 and larger mean the number of seconds the database is left open
after closing the last connection.

If the application exits normally or System.exit is called, the database is
closed immediately, even if a delay is set.

209 of 436

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. This setting can be appended to the
database URL: jdbc:h2:./test;DB_CLOSE_DELAY=-1

Example:

SET DB_CLOSE_DELAY -1

SET DEFAULT_LOCK_TIMEOUT

SET DEFAULT LOCK_TIMEOUT int

Sets the default lock timeout (in milliseconds) in this database that is used
for the new sessions. The default value for this setting is 1000 (one
second).

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent.

Example:

SET DEFAULT_LOCK_TIMEOUT 5000

SET DEFAULT_NULL_ORDERING

SET DEFAULT_NULL_ORDERING { LOW | HIGH | FIRST | LAST }

Changes the default ordering of NULL values. This setting affects new
indexes without explicit NULLS FIRST or NULLS LAST columns, and
ordering clauses of other commands without explicit null ordering. This
setting doesn't affect ordering of NULL values inside ARRAY or ROW
values (ARRAY[NULL] is always considered as smaller than ARRAY[1]
during sorting).

LOW is the default one, NULL values are considered as smaller than other
values during sorting.

With HIGH default ordering NULL values are considered as larger than
other values during sorting.

With FIRST default ordering NULL values are sorted before other values,
no matter if ascending or descending order is used.

210 of 436

With LAST default ordering NULL values are sorted after other values, no
matter if ascending or descending order is used.

Please note that FIRST and LAST make impossible to use an index on (A
ASC) for ORDER BY A DESC if column is nullable.

This setting is not persistent, but indexes are persisted with explicit NULLS
FIRST or NULLS LAST ordering and aren't affected by changes in this
setting. Admin rights are required to execute this command, as it affects
all connections. This command commits an open transaction in this
connection. This setting can be appended to the database URL:
jdbc:h2:./test;DEFAULT_NULL_ORDERING=HIGH

Example:

SET DEFAULT_NULL_ORDERING HIGH

SET DEFAULT_TABLE_TYPE

SET DEFAULT_TABLE_TYPE { MEMORY | CACHED }

Sets the default table storage type that is used when creating new tables.
Memory tables are kept fully in the main memory (including indexes),
however the data is still stored in the database file. The size of memory
tables is limited by the memory. The default is CACHED.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. It has no effect for in-memory
databases.

Example:

SET DEFAULT_TABLE_TYPE MEMORY

SET EXCLUSIVE

SET EXCLUSIVE { 0 | 1 | 2 }

Switched the database to exclusive mode (1, 2) and back to normal mode
(0).

In exclusive mode, new connections are rejected, and operations by other
connections are paused until the exclusive mode is disabled. When using
the value 1, existing connections stay open. When using the value 2, all

211 of 436

existing connections are closed (and current transactions are rolled back)
except the connection that executes SET EXCLUSIVE. Only the connection
that set the exclusive mode can disable it. When the connection is closed,
it is automatically disabled.

Admin rights are required to execute this command. This command
commits an open transaction in this connection.

Example:

SET EXCLUSIVE 1

SET IGNORECASE

SET IGNORECASE { TRUE | FALSE }

If IGNORECASE is enabled, text columns in newly created tables will be
case-insensitive. Already existing tables are not affected. The effect of
case-insensitive columns is similar to using a collation with strength
PRIMARY. Case-insensitive columns are compared faster than when using
a collation. String literals and parameters are however still considered
case sensitive even if this option is set.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. This setting can be appended to the
database URL: jdbc:h2:./test;IGNORECASE=TRUE

Example:

SET IGNORECASE TRUE

SET IGNORE_CATALOGS

SET IGNORE_CATALOGS { TRUE | FALSE }

If IGNORE_CATALOGS is enabled, catalog names in front of schema names
will be ignored. This can be used if multiple catalogs used by the same
connections must be simulated. Caveat: if both catalogs contain schemas
of the same name and if those schemas contain objects of the same
name, this will lead to errors, when trying to manage, access or change
these objects. This setting can be appended to the database URL:
jdbc:h2:./test;IGNORE_CATALOGS=TRUE

212 of 436

Example:

SET IGNORE_CATALOGS TRUE

SET JAVA_OBJECT_SERIALIZER

SET JAVA_OBJECT_SERIALIZER { null | className }

Sets the object used to serialize and deserialize java objects being stored
in column of type OTHER. The serializer class must be public and
implement org.h2.api.JavaObjectSerializer. Inner classes are not
supported. The class must be available in the classpath of the database
engine (when using the server mode, it must be both in the classpath of
the server and the client). This command can only be executed if there
are no tables defined.

Admin rights are required to execute this command. This command
commits an open transaction in this connection. This setting is persistent.
This setting can be appended to the database URL:
jdbc:h2:./test;JAVA_OBJECT_SERIALIZER='com.acme.SerializerClassName'

Example:

SET JAVA_OBJECT_SERIALIZER 'com.acme.SerializerClassName'

SET LAZY_QUERY_EXECUTION

SET LAZY_QUERY_EXECUTION int

Sets the lazy query execution mode. The values 0, 1 are supported.

If true, then large results are retrieved in chunks.

Note that not all queries support this feature, queries which do not are
processed normally.

This command does not commit a transaction, and rollback does not
affect it. This setting can be appended to the database URL:
jdbc:h2:./test;LAZY_QUERY_EXECUTION=1

Example:

SET LAZY_QUERY_EXECUTION 1

213 of 436

SET LOCK_MODE

SET LOCK_MODE int

Sets the lock mode. The values 0, 1, 2, and 3 are supported. The default is
3. This setting affects all connections.

The value 0 means no locking (should only be used for testing). Please
note that using SET LOCK_MODE 0 while at the same time using multiple
connections may result in inconsistent transactions.

The value 3 means row-level locking for write operations.

The values 1 and 2 have the same effect as 3.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. This setting can be appended to the
database URL: jdbc:h2:./test;LOCK_MODE=0

Example:

SET LOCK_MODE 0

SET LOCK_TIMEOUT

SET LOCK_TIMEOUT int

Sets the lock timeout (in milliseconds) for the current session. The default
value for this setting is 1000 (one second).

This command does not commit a transaction, and rollback does not
affect it. This setting can be appended to the database URL:
jdbc:h2:./test;LOCK_TIMEOUT=10000

Example:

SET LOCK_TIMEOUT 1000

SET MAX_LENGTH_INPLACE_LOB

SET MAX_LENGTH_INPLACE_LOB int

Sets the maximum size of an in-place LOB object.

This is the maximum length of an LOB that is stored with the record itself,
and the default value is 256.

214 of 436

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent.

Example:

SET MAX_LENGTH_INPLACE_LOB 128

SET MAX_LOG_SIZE

SET MAX_LOG_SIZE int

Sets the maximum size of the transaction log, in megabytes. If the log is
larger, and if there is no open transaction, the transaction log is truncated.
If there is an open transaction, the transaction log will continue to grow
however. The default max size is 16 MB. This setting has no effect for in-
memory databases.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent.

Example:

SET MAX_LOG_SIZE 2

SET MAX_MEMORY_ROWS

SET MAX_MEMORY_ROWS int

The maximum number of rows in a result set that are kept in-memory. If
more rows are read, then the rows are buffered to disk. The default is
40000 per GB of available RAM.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. It has no effect for in-memory
databases.

Example:

SET MAX_MEMORY_ROWS 1000

SET MAX_MEMORY_UNDO

SET MAX_MEMORY_UNDO int

215 of 436

The maximum number of undo records per a session that are kept in-
memory. If a transaction is larger, the records are buffered to disk. The
default value is 50000. Changes to tables without a primary key can not
be buffered to disk. This setting is not supported when using multi-version
concurrency.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. It has no effect for in-memory
databases.

Example:

SET MAX_MEMORY_UNDO 1000

SET MAX_OPERATION_MEMORY

SET MAX_OPERATION_MEMORY int

Sets the maximum memory used for large operations (delete and insert),
in bytes. Operations that use more memory are buffered to disk, slowing
down the operation. The default max size is 100000. 0 means no limit.

This setting is not persistent. Admin rights are required to execute this
command, as it affects all connections. It has no effect for in-memory
databases. This setting can be appended to the database URL:
jdbc:h2:./test;MAX_OPERATION_MEMORY=10000

Example:

SET MAX_OPERATION_MEMORY 0

SET MODE

SET MODE { REGULAR | STRICT | LEGACY | DB2 | DERBY | HSQLDB |
MSSQLSERVER | MYSQL | ORACLE | POSTGRESQL }

Changes to another database compatibility mode. For details, see
Compatibility Modes.

This setting is not persistent. Admin rights are required to execute this
command, as it affects all connections. This command commits an open
transaction in this connection. This setting can be appended to the
database URL: jdbc:h2:./test;MODE=MYSQL

216 of 436

Example:

SET MODE HSQLDB

SET NON_KEYWORDS

SET NON_KEYWORDS [name [,...]]

Converts the specified tokens from keywords to plain identifiers for the
current session. This setting may break some commands and should be
used with caution and only when necessary. Use quoted identifiers instead
of this setting if possible.

This command does not commit a transaction, and rollback does not
affect it. This setting can be appended to the database URL:
jdbc:h2:./test;NON_KEYWORDS=KEY,VALUE

Example:

SET NON_KEYWORDS KEY, VALUE

SET OPTIMIZE_REUSE_RESULTS

SET OPTIMIZE_REUSE_RESULTS { 0 | 1 }

Enabled (1) or disabled (0) the result reuse optimization. If enabled,
subqueries and views used as subqueries are only re-run if the data in one
of the tables was changed. This option is enabled by default.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting can be appended to the database URL:
jdbc:h2:./test;OPTIMIZE_REUSE_RESULTS=0

Example:

SET OPTIMIZE_REUSE_RESULTS 0

SET PASSWORD

SET PASSWORD string

Changes the password of the current user. The password must be in single
quotes. It is case sensitive and can contain spaces.

This command commits an open transaction in this connection.

217 of 436

Example:

SET PASSWORD 'abcstzri!.5'

SET QUERY_STATISTICS

SET QUERY_STATISTICS { TRUE | FALSE }

Disabled or enables query statistics gathering for the whole database. The
statistics are reflected in the INFORMATION_SCHEMA.QUERY_STATISTICS
meta-table.

This setting is not persistent. This command commits an open transaction
in this connection. Admin rights are required to execute this command, as
it affects all connections.

Example:

SET QUERY_STATISTICS FALSE

SET QUERY_STATISTICS_MAX_ENTRIES

SET QUERY_STATISTICS int

Set the maximum number of entries in query statistics meta-table. Default
value is 100.

This setting is not persistent. This command commits an open transaction
in this connection. Admin rights are required to execute this command, as
it affects all connections.

Example:

SET QUERY_STATISTICS_MAX_ENTRIES 500

SET QUERY_TIMEOUT

SET QUERY_TIMEOUT int

Set the query timeout of the current session to the given value. The
timeout is in milliseconds. All kinds of statements will throw an exception
if they take longer than the given value. The default timeout is 0, meaning
no timeout.

This command does not commit a transaction, and rollback does not
affect it.

218 of 436

Example:

SET QUERY_TIMEOUT 10000

SET REFERENTIAL_INTEGRITY

SET REFERENTIAL_INTEGRITY { TRUE | FALSE }

Disabled or enables referential integrity checking for the whole database.
Enabling it does not check existing data. Use ALTER TABLE SET to disable
it only for one table.

This setting is not persistent. This command commits an open transaction
in this connection. Admin rights are required to execute this command, as
it affects all connections.

Example:

SET REFERENTIAL_INTEGRITY FALSE

SET RETENTION_TIME

SET RETENTION_TIME int

How long to retain old, persisted data, in milliseconds. The default is
45000 (45 seconds), 0 means overwrite data as early as possible. It is
assumed that a file system and hard disk will flush all write buffers within
this time. Using a lower value might be dangerous, unless the file system
and hard disk flush the buffers earlier. To manually flush the buffers, use
CHECKPOINT SYNC, however please note that according to various tests
this does not always work as expected depending on the operating system
and hardware.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting is persistent. This setting can be appended to the
database URL: jdbc:h2:./test;RETENTION_TIME=0

Example:

SET RETENTION_TIME 0

SET SALT HASH

SET SALT bytes HASH bytes

219 of 436

Sets the password salt and hash for the current user. The password must
be in single quotes. It is case sensitive and can contain spaces.

This command commits an open transaction in this connection.

Example:

SET SALT '00' HASH '1122'

SET SCHEMA

SET SCHEMA { schemaString | { schemaName } }

Changes the default schema of the current connection. The default
schema is used in statements where no schema is set explicitly. The
default schema for new connections is PUBLIC.

This command does not commit a transaction, and rollback does not
affect it. This setting can be appended to the database URL:
jdbc:h2:./test;SCHEMA=ABC

Example:

SET SCHEMA 'PUBLIC'
SET SCHEMA INFORMATION_SCHEMA

SET SCHEMA_SEARCH_PATH

SET SCHEMA_SEARCH_PATH schemaName [,...]

Changes the schema search path of the current connection. The default
schema is used in statements where no schema is set explicitly. The
default schema for new connections is PUBLIC.

This command does not commit a transaction, and rollback does not
affect it. This setting can be appended to the database URL:
jdbc:h2:./test;SCHEMA_SEARCH_PATH=ABC,DEF

Example:

SET SCHEMA_SEARCH_PATH INFORMATION_SCHEMA, PUBLIC

SET SESSION CHARACTERISTICS

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ |
SERIALIZABLE }

220 of 436

Changes the transaction isolation level of the current session. The actual
support of isolation levels depends on the database engine.

This command commits an open transaction in this session.

Example:

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
SERIALIZABLE

SET THROTTLE

SET THROTTLE int

Sets the throttle for the current connection. The value is the number of
milliseconds delay after each 50 ms. The default value is 0 (throttling
disabled).

This command does not commit a transaction, and rollback does not
affect it. This setting can be appended to the database URL:
jdbc:h2:./test;THROTTLE=50

Example:

SET THROTTLE 200

SET TIME ZONE

SET TIME ZONE { LOCAL | intervalHourToMinute | { intervalHourToSecond
| string } }

Sets the current time zone for the session.

This command does not commit a transaction, and rollback does not
affect it. This setting can be appended to the database URL:
jdbc:h2:./test;TIME ZONE='1:00'

Time zone offset used for CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_DATE, LOCALTIME, and LOCALTIMESTAMP is adjusted, so these
functions will return new values based on the same UTC timestamp after
execution of this command.

Example:

SET TIME ZONE LOCAL
SET TIME ZONE '-5:00'

221 of 436

SET TIME ZONE INTERVAL '1:00' HOUR TO MINUTE
SET TIME ZONE 'Europe/London'

SET TRACE_LEVEL

SET { TRACE_LEVEL_FILE | TRACE_LEVEL_SYSTEM_OUT } int

Sets the trace level for file the file or system out stream. Levels are:
0=off, 1=error, 2=info, 3=debug. The default level is 1 for file and 0 for
system out. To use SLF4J, append ;TRACE_LEVEL_FILE=4 to the database
URL when opening the database.

This setting is not persistent. Admin rights are required to execute this
command, as it affects all connections. This command does not commit a
transaction, and rollback does not affect it. This setting can be appended
to the database URL: jdbc:h2:./test;TRACE_LEVEL_SYSTEM_OUT=3

Example:

SET TRACE_LEVEL_SYSTEM_OUT 3

SET TRACE_MAX_FILE_SIZE

SET TRACE_MAX_FILE_SIZE int

Sets the maximum trace file size. If the file exceeds the limit, the file is
renamed to .old and a new file is created. If another .old file exists, it is
deleted. The default max size is 16 MB.

This setting is persistent. Admin rights are required to execute this
command, as it affects all connections. This command commits an open
transaction in this connection. This setting can be appended to the
database URL: jdbc:h2:./test;TRACE_MAX_FILE_SIZE=3

Example:

SET TRACE_MAX_FILE_SIZE 10

SET TRUNCATE_LARGE_LENGTH

SET TRUNCATE_LARGE_LENGTH { TRUE | FALSE }

If TRUE is specified, the CHARACTER, CHARACTER VARYING,
VARCHAR_IGNORECASE, BINARY,

222 of 436

Example:

BINARY_VARYING"

SET VARIABLE_BINARY

SET VARIABLE_BINARY { TRUE | FALSE }

If TRUE is specified, the BINARY data type will be parsed as VARBINARY in
the current session. It can be used for compatibility with older versions of
H2.

This setting can be appended to the database URL:
jdbc:h2:./test;VARIABLE_BINARY=TRUE

Example:

SET VARIABLE_BINARY TRUE

SET WRITE_DELAY

SET WRITE_DELAY int

Set the maximum delay between a commit and flushing the log, in
milliseconds. This setting is persistent. The default is 500 ms.

Admin rights are required to execute this command, as it affects all
connections. This command commits an open transaction in this
connection. This setting can be appended to the database URL:
jdbc:h2:./test;WRITE_DELAY=0

Example:

SET WRITE_DELAY 2000

SHUTDOWN

SHUTDOWN [IMMEDIATELY | COMPACT | DEFRAG]

This statement closes all open connections to the database and closes the
database. This command is usually not required, as the database is closed
automatically when the last connection to it is closed.

If no option is used, then the database is closed normally. All connections
are closed, open transactions are rolled back.

223 of 436

SHUTDOWN COMPACT fully compacts the database (re-creating the
database may further reduce the database size). If the database is closed
normally (using SHUTDOWN or by closing all connections), then the
database is also compacted, but only for at most the time defined by the
database setting h2.maxCompactTime in milliseconds (see there).

SHUTDOWN IMMEDIATELY closes the database files without any cleanup
and without compacting.

SHUTDOWN DEFRAG is currently equivalent to COMPACT.

Admin rights are required to execute this command.

Example:

SHUTDOWN COMPACT

224 of 436

Functions

Index

Numeric Functions

ABS
ACOS
ASIN
ATAN
COS
COSH
COT
SIN
SINH
TAN
TANH
ATAN2
BITAND
BITOR
BITXOR
BITNOT
BITNAND
BITNOR
BITXNOR
BITGET
BITCOUNT
LSHIFT
RSHIFT
ULSHIFT
URSHIFT
ROTATELEFT
ROTATERIGHT
MOD
CEIL
DEGREES
EXP
FLOOR

225 of 436

LN
LOG
LOG10
ORA_HASH
RADIANS
SQRT
PI
POWER
RAND
RANDOM_UUID
ROUND
SECURE_RAND
SIGN
ENCRYPT
DECRYPT
HASH
TRUNC
COMPRESS
EXPAND
ZERO

String Functions

ASCII
BIT_LENGTH
CHAR_LENGTH
OCTET_LENGTH
CHAR
CONCAT
CONCAT_WS
DIFFERENCE
HEXTORAW
RAWTOHEX
INSERT Function
LOWER
UPPER
LEFT
RIGHT
LOCATE

226 of 436

LPAD
RPAD
LTRIM
RTRIM
BTRIM
TRIM
REGEXP_REPLACE
REGEXP_LIKE
REGEXP_SUBSTR
REPEAT
REPLACE
SOUNDEX
SPACE
STRINGDECODE
STRINGENCODE
STRINGTOUTF8
SUBSTRING
UTF8TOSTRING
QUOTE_IDENT
XMLATTR
XMLNODE
XMLCOMMENT
XMLCDATA
XMLSTARTDOC
XMLTEXT
TO_CHAR
TRANSLATE

Time and Date Functions

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
LOCALTIME
LOCALTIMESTAMP
DATEADD
DATEDIFF
DATE_TRUNC
LAST_DAY

227 of 436

DAYNAME
DAY_OF_MONTH
DAY_OF_WEEK
ISO_DAY_OF_WEEK
DAY_OF_YEAR
EXTRACT
FORMATDATETIME
HOUR
MINUTE
MONTH
MONTHNAME
PARSEDATETIME
QUARTER
SECOND
WEEK
ISO_WEEK
YEAR
ISO_YEAR

System Functions

ABORT_SESSION
ARRAY_GET
CARDINALITY
ARRAY_CONTAINS
ARRAY_CAT
ARRAY_APPEND
ARRAY_MAX_CARDINALITY
TRIM_ARRAY
ARRAY_SLICE
AUTOCOMMIT
CANCEL_SESSION
CASEWHEN Function
COALESCE
CONVERT
CURRVAL
CSVWRITE
CURRENT_SCHEMA
CURRENT_CATALOG

228 of 436

DATABASE_PATH
DATA_TYPE_SQL
DB_OBJECT_ID
DB_OBJECT_SQL
DB_OBJECT_SIZE
DB_OBJECT_TOTAL_SIZE
DB_OBJECT_APPROXIMATE_SIZE
DB_OBJECT_APPROXIMATE_TOTAL_SIZE
DECODE
DISK_SPACE_USED
SIGNAL
ESTIMATED_ENVELOPE
FILE_READ
FILE_WRITE
GREATEST
LEAST
LOCK_MODE
LOCK_TIMEOUT
MEMORY_FREE
MEMORY_USED
NEXTVAL
NULLIF
NVL2
READONLY
ROWNUM
SESSION_ID
SET
TRANSACTION_ID
TRUNCATE_VALUE
CURRENT_PATH
CURRENT_ROLE
CURRENT_USER
H2VERSION

JSON Functions

JSON_OBJECT
JSON_ARRAY

229 of 436

Table Functions

CSVREAD
LINK_SCHEMA
TABLE
UNNEST

Details
Non-standard syntax is marked in green. Compatibility-only non-standard
syntax is marked in red, don't use it unless you need it for compatibility
with other databases or old versions of H2.

Numeric Functions

ABS

ABS({ numeric | interval })

Returns the absolute value of a specified value. The returned value is of
the same data type as the parameter.

Note that TINYINT, SMALLINT, INT, and BIGINT data types cannot represent
absolute values of their minimum negative values, because they have
more negative values than positive. For example, for INT data type
allowed values are from -2147483648 to 2147483647. ABS(-2147483648)
should be 2147483648, but this value is not allowed for this data type. It
leads to an exception. To avoid it cast argument of this function to a
higher data type.

Example:

ABS(I)
ABS(CAST(I AS BIGINT))

ACOS

ACOS(numeric)

Calculate the arc cosine.

Argument must be between -1 and 1 inclusive.

This function returns a double precision value.

230 of 436

Example:

ACOS(D)

ASIN

ASIN(numeric)

Calculate the arc sine.

Argument must be between -1 and 1 inclusive.

This function returns a double precision value.

Example:

ASIN(D)

ATAN

ATAN(numeric)

Calculate the arc tangent.

This function returns a double precision value.

Example:

ATAN(D)

COS

COS(numeric)

Calculate the trigonometric cosine.

This function returns a double precision value.

Example:

COS(ANGLE)

COSH

COSH(numeric)

Calculate the hyperbolic cosine.

This function returns a double precision value.

231 of 436

Example:

COSH(X)

COT

COT(numeric)

Calculate the trigonometric cotangent (1/TAN(ANGLE)).

This function returns a double precision value.

Example:

COT(ANGLE)

SIN

SIN(numeric)

Calculate the trigonometric sine.

This function returns a double precision value.

Example:

SIN(ANGLE)

SINH

SINH(numeric)

Calculate the hyperbolic sine.

This function returns a double precision value.

Example:

SINH(ANGLE)

TAN

TAN(numeric)

Calculate the trigonometric tangent.

This function returns a double precision value.

Example:

232 of 436

TAN(ANGLE)

TANH

TANH(numeric)

Calculate the hyperbolic tangent.

This function returns a double precision value.

Example:

TANH(X)

ATAN2

ATAN2(numeric, numeric)

Calculate the angle when converting the rectangular coordinates to polar
coordinates.

This function returns a double precision value.

Example:

ATAN2(X, Y)

BITAND

BITAND(expression, expression)

The bitwise AND operation. Arguments should have TINYINT, SMALLINT,
INTEGER, BIGINT, BINARY, or BINARY VARYING data type. This function
returns result of the same data type.

For aggregate function see BIT_AND_AGG.

Example:

BITAND(A, B)

BITOR

BITOR(expression, expression)

The bitwise OR operation. Arguments should have TINYINT, SMALLINT,
INTEGER, BIGINT, BINARY, or BINARY VARYING data type. This function
returns result of the same data type.

233 of 436

For aggregate function see BIT_OR_AGG.

Example:

BITOR(A, B)

BITXOR

BITXOR(expression, expression)

Arguments should have TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or
BINARY VARYING data type. This function returns result of the same data
type.

For aggregate function see BIT_XOR_AGG.

Example:

The bitwise XOR operation.

BITNOT

BITNOT(expression)

The bitwise NOT operation. Argument should have TINYINT, SMALLINT,
INTEGER, BIGINT, BINARY, or BINARY VARYING data type. This function
returns result of the same data type.

Example:

BITNOT(A)

BITNAND

BITNAND(expression, expression)

The bitwise NAND operation equivalent to BITNOT(BITAND(expression,
expression)). Arguments should have TINYINT, SMALLINT, INTEGER,
BIGINT, BINARY, or BINARY VARYING data type. This function returns result
of the same data type.

For aggregate function see BIT_NAND_AGG.

Example:

BITNAND(A, B)

234 of 436

BITNOR

BITNOR(expression, expression)

The bitwise NOR operation equivalent to BITNOT(BITOR(expression,
expression)). Arguments should have TINYINT, SMALLINT, INTEGER,
BIGINT, BINARY, or BINARY VARYING data type. This function returns result
of the same data type.

For aggregate function see BIT_NOR_AGG.

Example:

BITNOR(A, B)

BITXNOR

BITXNOR(expression, expression)

The bitwise XNOR operation equivalent to BITNOT(BITXOR(expression,
expression)). Arguments should have TINYINT, SMALLINT, INTEGER,
BIGINT, BINARY, or BINARY VARYING data type. This function returns result
of the same data type.

For aggregate function see BIT_XNOR_AGG.

Example:

BITXNOR(A, B)

BITGET

BITGET(expression, long)

Returns true if and only if the first argument has a bit set in the position
specified by the second parameter. The first argument should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This method returns a boolean. The second argument is zero-
indexed; the least significant bit has position 0.

Example:

BITGET(A, 1)

235 of 436

BITCOUNT

BITCOUNT(expression)

Returns count of set bits in the specified value. Value should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This method returns a long.

Example:

BITCOUNT(A)

LSHIFT

LSHIFT(expression, long)

The bitwise signed left shift operation. Shifts the first argument by the
number of bits given by the second argument. Argument should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This function returns result of the same data type.

If number of bits is negative, a signed right shift is performed instead. For
numeric values a sign bit is used for left-padding (with negative offset). If
number of bits is equal to or larger than number of bits in value all bits are
pushed out from the value. For binary string arguments signed and
unsigned shifts return the same results.

Example:

LSHIFT(A, B)

RSHIFT

RSHIFT(expression, long)

The bitwise signed right shift operation. Shifts the first argument by the
number of bits given by the second argument. Argument should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This function returns result of the same data type.

If number of bits is negative, a signed left shift is performed instead. For
numeric values a sign bit is used for left-padding (with positive offset). If
number of bits is equal to or larger than number of bits in value all bits are
pushed out from the value. For binary string arguments signed and
unsigned shifts return the same results.

236 of 436

Example:

RSHIFT(A, B)

ULSHIFT

ULSHIFT(expression, long)

The bitwise unsigned left shift operation. Shifts the first argument by the
number of bits given by the second argument. Argument should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This function returns result of the same data type.

If number of bits is negative, an unsigned right shift is performed instead.
If number of bits is equal to or larger than number of bits in value all bits
are pushed out from the value. For binary string arguments signed and
unsigned shifts return the same results.

Example:

ULSHIFT(A, B)

URSHIFT

URSHIFT(expression, long)

The bitwise unsigned right shift operation. Shifts the first argument by the
number of bits given by the second argument. Argument should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This function returns result of the same data type.

If number of bits is negative, an unsigned left shift is performed instead. If
number of bits is equal to or larger than number of bits in value all bits are
pushed out from the value. For binary string arguments signed and
unsigned shifts return the same results.

Example:

URSHIFT(A, B)

ROTATELEFT

ROTATELEFT(expression, long)

237 of 436

The bitwise left rotation operation. Rotates the first argument by the
number of bits given by the second argument. Argument should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This function returns result of the same data type.

Example:

ROTATELEFT(A, B)

ROTATERIGHT

ROTATERIGHT(expression, long)

The bitwise right rotation operation. Rotates the first argument by the
number of bits given by the second argument. Argument should have
TINYINT, SMALLINT, INTEGER, BIGINT, BINARY, or BINARY VARYING data
type. This function returns result of the same data type.

Example:

ROTATERIGHT(A, B)

MOD

MOD(dividendNumeric, divisorNumeric)

The modulus expression.

Result has the same type as divisor. Result is NULL if either of arguments
is NULL. If divisor is 0, an exception is raised. Result has the same sign as
dividend or is equal to 0.

Usually arguments should have scale 0, but it isn't required by H2.

Example:

MOD(A, B)

CEIL

{ CEIL | CEILING } (numeric)

Returns the smallest integer value that is greater than or equal to the
argument. This method returns value of the same type as argument, but
with scale set to 0 and adjusted precision, if applicable.

Example:
238 of 436

CEIL(A)

DEGREES

DEGREES(numeric)

See also Java Math.toDegrees. This method returns a double.

Example:

DEGREES(A)

EXP

EXP(numeric)

See also Java Math.exp. This method returns a double.

Example:

EXP(A)

FLOOR

FLOOR(numeric)

Returns the largest integer value that is less than or equal to the
argument. This method returns value of the same type as argument, but
with scale set to 0 and adjusted precision, if applicable.

Example:

FLOOR(A)

LN

LN(numeric)

Calculates the natural (base e) logarithm as a double value. Argument
must be a positive numeric value.

Example:

LN(A)

LOG

LOG({baseNumeric, numeric | {numeric}})

239 of 436

Calculates the logarithm with specified base as a double value. Argument
and base must be positive numeric values. Base cannot be equal to 1.

The default base is e (natural logarithm), in the PostgreSQL mode the
default base is base 10. In MSSQLServer mode the optional base is
specified after the argument.

Single-argument variant of LOG function is deprecated, use LN or LOG10
instead.

Example:

LOG(2, A)

LOG10

LOG10(numeric)

Calculates the base 10 logarithm as a double value. Argument must be a
positive numeric value.

Example:

LOG10(A)

ORA_HASH

ORA_HASH(expression [, bucketLong [, seedLong]])

Computes a hash value. Optional bucket argument determines the
maximum returned value. This argument should be between 0 and
4294967295, default is 4294967295. Optional seed argument is combined
with the given expression to return the different values for the same
expression. This argument should be between 0 and 4294967295, default
is 0. This method returns a long value between 0 and the specified or
default bucket value inclusive.

Example:

ORA_HASH(A)

RADIANS

RADIANS(numeric)

See also Java Math.toRadians. This method returns a double.

240 of 436

Example:

RADIANS(A)

SQRT

SQRT(numeric)

See also Java Math.sqrt. This method returns a double.

Example:

SQRT(A)

PI

PI()

See also Java Math.PI. This method returns a double.

Example:

PI()

POWER

POWER(numeric, numeric)

See also Java Math.pow. This method returns a double.

Example:

POWER(A, B)

RAND

{ RAND | RANDOM } ([int])

Calling the function without parameter returns the next a pseudo random
number. Calling it with an parameter seeds the session's random number
generator. This method returns a double between 0 (including) and 1
(excluding).

Example:

RAND()

241 of 436

RANDOM_UUID

{ RANDOM_UUID | UUID } ()

Returns a new UUID with 122 pseudo random bits.

Please note that using an index on randomly generated data will result on
poor performance once there are millions of rows in a table. The reason is
that the cache behavior is very bad with randomly distributed data. This is
a problem for any database system.

Example:

RANDOM_UUID()

ROUND

ROUND(numeric [, digitsInt])

Rounds to a number of fractional digits. This method returns value of the
same type as argument, but with adjusted precision and scale, if
applicable.

Example:

ROUND(N, 2)

SECURE_RAND

SECURE_RAND(int)

Generates a number of cryptographically secure random numbers. This
method returns bytes.

Example:

CALL SECURE_RAND(16)

SIGN

SIGN({ numeric | interval })

Returns -1 if the value is smaller than 0, 0 if zero or NaN, and otherwise 1.

Example:

SIGN(N)

242 of 436

ENCRYPT

ENCRYPT(algorithmString, keyBytes, dataBytes)

Encrypts data using a key. The supported algorithm is AES. The block size
is 16 bytes. This method returns bytes.

Example:

CALL ENCRYPT('AES', '00', STRINGTOUTF8('Test'))

DECRYPT

DECRYPT(algorithmString, keyBytes, dataBytes)

Decrypts data using a key. The supported algorithm is AES. The block size
is 16 bytes. This method returns bytes.

Example:

CALL TRIM(CHAR(0) FROM UTF8TOSTRING(
 DECRYPT('AES', '00', '3fabb4de8f1ee2e97d7793bab2db1116')))

HASH

HASH(algorithmString, expression [, iterationInt])

Calculate the hash value using an algorithm, and repeat this process for a
number of iterations.

This function supports MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-
512, SHA3-224, SHA3-256, SHA3-384, and SHA3-512 algorithms. SHA-224,
SHA-384, and SHA-512 may be unavailable in some JREs.

MD5 and SHA-1 algorithms should not be considered as secure.

If this function is used to encrypt a password, a random salt should be
concatenated with a password and this salt and result of the function
should be stored to prevent a rainbow table attack and number of
iterations should be large enough to slow down a dictionary or a brute
force attack.

This method returns bytes.

Example:

243 of 436

CALL HASH('SHA-256', 'Text', 1000)
CALL HASH('SHA3-256', X'0102')

TRUNC

{ TRUNC | TRUNCATE } ({ {numeric [, digitsInt] }
| { timestamp | timestampWithTimeZone | date | timestampString } })

When a numeric argument is specified, truncates it to a number of digits
(to the next value closer to 0) and returns value of the same type as
argument, but with adjusted precision and scale, if applicable.

This function with datetime or string argument is deprecated, use
DATE_TRUNC instead. When used with a timestamp, truncates the
timestamp to a date (day) value and returns a timestamp with or without
time zone depending on type of the argument. When used with a date,
returns a timestamp at start of this date. When used with a timestamp as
string, truncates the timestamp to a date (day) value and returns a
timestamp without time zone.

Example:

TRUNCATE(N, 2)

COMPRESS

COMPRESS(dataBytes [, algorithmString])

Compresses the data using the specified compression algorithm.
Supported algorithms are: LZF (faster but lower compression; default),
and DEFLATE (higher compression). Compression does not always reduce
size. Very small objects and objects with little redundancy may get larger.
This method returns bytes.

Example:

COMPRESS(STRINGTOUTF8('Test'))

EXPAND

EXPAND(bytes)

Expands data that was compressed using the COMPRESS function. This
method returns bytes.

244 of 436

Example:

UTF8TOSTRING(EXPAND(COMPRESS(STRINGTOUTF8('Test'))))

ZERO

ZERO()

Returns the value 0. This function can be used even if numeric literals are
disabled.

Example:

ZERO()

String Functions

ASCII

ASCII(string)

Returns the ASCII value of the first character in the string. This method
returns an int.

Example:

ASCII('Hi')

BIT_LENGTH

BIT_LENGTH(bytes)

Returns the number of bits in a binary string. This method returns a long.

Example:

BIT_LENGTH(NAME)

CHAR_LENGTH

{ CHAR_LENGTH | CHARACTER_LENGTH | { LENGTH } } (string)

Returns the number of characters in a character string. This method
returns a long.

Example:

CHAR_LENGTH(NAME)
245 of 436

OCTET_LENGTH

OCTET_LENGTH(bytes)

Returns the number of bytes in a binary string. This method returns a
long.

Example:

OCTET_LENGTH(NAME)

CHAR

{ CHAR | CHR } (int)

Returns the character that represents the ASCII value. This method
returns a string.

Example:

CHAR(65)

CONCAT

CONCAT(string, string [,...])

Combines strings. Unlike with the operator ||, NULL parameters are
ignored, and do not cause the result to become NULL. If all parameters are
NULL the result is an empty string. This method returns a string.

Example:

CONCAT(NAME, '!')

CONCAT_WS

CONCAT_WS(separatorString, string, string [,...])

Combines strings with separator. If separator is NULL it is treated like an
empty string. Other NULL parameters are ignored. Remaining non-NULL
parameters, if any, are concatenated with the specified separator. If there
are no remaining parameters the result is an empty string. This method
returns a string.

Example:

CONCAT_WS(',', NAME, '!')

246 of 436

DIFFERENCE

DIFFERENCE(string, string)

Returns the difference between the sounds of two strings. The difference
is calculated as a number of matched characters in the same positions in
SOUNDEX representations of arguments. This method returns an int
between 0 and 4 inclusive, or null if any of its parameters is null. Note that
value of 0 means that strings are not similar to each other. Value of 4
means that strings are fully similar to each other (have the same
SOUNDEX representation).

Example:

DIFFERENCE(T1.NAME, T2.NAME)

HEXTORAW

HEXTORAW(string)

Converts a hex representation of a string to a string. 4 hex characters per
string character are used.

Example:

HEXTORAW(DATA)

RAWTOHEX

RAWTOHEX({string|bytes})

Converts a string or bytes to the hex representation. 4 hex characters per
string character are used. This method returns a string.

Example:

RAWTOHEX(DATA)

INSERT Function

INSERT(originalString, startInt, lengthInt, addString)

Inserts a additional string into the original string at a specified start
position. The length specifies the number of characters that are removed
at the start position in the original string. This method returns a string.

247 of 436

Example:

INSERT(NAME, 1, 1, ' ')

LOWER

{ LOWER | { LCASE } } (string)

Converts a string to lowercase.

Example:

LOWER(NAME)

UPPER

{ UPPER | { UCASE } } (string)

Converts a string to uppercase.

Example:

UPPER(NAME)

LEFT

LEFT(string, int)

Returns the leftmost number of characters.

Example:

LEFT(NAME, 3)

RIGHT

RIGHT(string, int)

Returns the rightmost number of characters.

Example:

RIGHT(NAME, 3)

LOCATE

{ LOCATE(searchString, string [, startInt]) }
| { INSTR(string, searchString, [, startInt]) }
| { POSITION(searchString, string) }

248 of 436

Returns the location of a search string in a string. If a start position is
used, the characters before it are ignored. If position is negative, the
rightmost location is returned. 0 is returned if the search string is not
found. Please note this function is case sensitive, even if the parameters
are not.

Example:

LOCATE('.', NAME)

LPAD

LPAD(string, int[, paddingString])

Left pad the string to the specified length. If the length is shorter than the
string, it will be truncated at the end. If the padding string is not set,
spaces will be used.

Example:

LPAD(AMOUNT, 10, '*')

RPAD

RPAD(string, int[, paddingString])

Right pad the string to the specified length. If the length is shorter than
the string, it will be truncated. If the padding string is not set, spaces will
be used.

Example:

RPAD(TEXT, 10, '-')

LTRIM

LTRIM(string [, charactersToTrimString])

Removes all leading spaces or other specified characters from a string,
multiple characters can be specified.

Example:

LTRIM(NAME)
LTRIM(NAME, ' _~');

249 of 436

RTRIM

RTRIM(string [, charactersToTrimString])

Removes all trailing spaces or other specified characters from a string,
multiple characters can be specified.

Example:

RTRIM(NAME)
RTRIM(NAME, ' _~');

BTRIM

BTRIM(string [, charactersToTrimString])

Removes all leading and trailing spaces or other specified characters from
a string, multiple characters can be specified.

Example:

BTRIM(NAME)
BTRIM(NAME, ' _~');

TRIM

TRIM ([[LEADING | TRAILING | BOTH] [characterToTrimString] FROM]
string)

Removes all leading spaces, trailing spaces, or spaces at both ends from a
string. If character to trim is specified, these characters are removed
instead of spaces, only one character can be specified. To trim multiple
different characters use LTRIM, RTRIM, or BTRIM.

If neither LEADING, TRAILING, nor BOTH are specified, BOTH is implicit.

Example:

TRIM(NAME)
TRIM(LEADING FROM NAME)
TRIM(BOTH '_' FROM NAME)

REGEXP_REPLACE

REGEXP_REPLACE(inputString, regexString, replacementString [,
flagsString])

250 of 436

Replaces each substring that matches a regular expression. For details,
see the Java String.replaceAll() method. If any parameter is null (except
optional flagsString parameter), the result is null.

Flags values are limited to 'i', 'c', 'n', 'm'. Other symbols cause exception.
Multiple symbols could be used in one flagsString parameter (like 'im').
Later flags override first ones, for example 'ic' is equivalent to case
sensitive matching 'c'.

'i' enables case insensitive matching (Pattern.CASE_INSENSITIVE)

'c' disables case insensitive matching (Pattern.CASE_INSENSITIVE)

'n' allows the period to match the newline character (Pattern.DOTALL)

'm' enables multiline mode (Pattern.MULTILINE)

Example:

REGEXP_REPLACE('Hello World', ' +', ' ')
REGEXP_REPLACE('Hello WWWWorld', 'w+', 'W', 'i')

REGEXP_LIKE

REGEXP_LIKE(inputString, regexString [, flagsString])

Matches string to a regular expression. For details, see the Java
Matcher.find() method. If any parameter is null (except optional
flagsString parameter), the result is null.

Flags values are limited to 'i', 'c', 'n', 'm'. Other symbols cause exception.
Multiple symbols could be used in one flagsString parameter (like 'im').
Later flags override first ones, for example 'ic' is equivalent to case
sensitive matching 'c'.

'i' enables case insensitive matching (Pattern.CASE_INSENSITIVE)

'c' disables case insensitive matching (Pattern.CASE_INSENSITIVE)

'n' allows the period to match the newline character (Pattern.DOTALL)

'm' enables multiline mode (Pattern.MULTILINE)

Example:

REGEXP_LIKE('Hello World', '[A-Z]*', 'i')

251 of 436

REGEXP_SUBSTR

REGEXP_SUBSTR(inputString, regexString [, positionInt, occurrenceInt,
flagsString, groupInt])

Matches string to a regular expression and returns the matched substring.
For details, see the java.util.regex.Pattern and related functionality.

The parameter position specifies where in inputString the match should
start. Occurrence indicates which occurrence of pattern in inputString to
search for.

Flags values are limited to 'i', 'c', 'n', 'm'. Other symbols cause exception.
Multiple symbols could be used in one flagsString parameter (like 'im').
Later flags override first ones, for example 'ic' is equivalent to case
sensitive matching 'c'.

'i' enables case insensitive matching (Pattern.CASE_INSENSITIVE)

'c' disables case insensitive matching (Pattern.CASE_INSENSITIVE)

'n' allows the period to match the newline character (Pattern.DOTALL)

'm' enables multiline mode (Pattern.MULTILINE)

If the pattern has groups, the group parameter can be used to specify
which group to return.

Example:

REGEXP_SUBSTR('2020-10-01', '\d{4}')
REGEXP_SUBSTR('2020-10-01', '(\d{4})-(\d{2})-(\d{2})', 1, 1, NULL, 2)

REPEAT

REPEAT(string, int)

Returns a string repeated some number of times.

Example:

REPEAT(NAME || ' ', 10)

REPLACE

REPLACE(string, searchString [, replacementString])

252 of 436

Replaces all occurrences of a search string in a text with another string. If
no replacement is specified, the search string is removed from the original
string. If any parameter is null, the result is null.

Example:

REPLACE(NAME, ' ')

SOUNDEX

SOUNDEX(string)

Returns a four character upper-case code representing the sound of a
string as pronounced in English. This method returns a string, or null if
parameter is null. See https://en.wikipedia.org/wiki/Soundex for more
information.

Example:

SOUNDEX(NAME)

SPACE

SPACE(int)

Returns a string consisting of a number of spaces.

Example:

SPACE(80)

STRINGDECODE

STRINGDECODE(string)

Converts a encoded string using the Java string literal encoding format.
Special characters are \b, \t, \n, \f, \r, \", \\, \<octal>, \u<unicode>. This
method returns a string.

Example:

CALL STRINGENCODE(STRINGDECODE('Lines 1\nLine 2'))

STRINGENCODE

STRINGENCODE(string)

253 of 436

https://en.wikipedia.org/wiki/Soundex

Encodes special characters in a string using the Java string literal
encoding format. Special characters are \b, \t, \n, \f, \r, \", \\, \<octal>, \
u<unicode>. This method returns a string.

Example:

CALL STRINGENCODE(STRINGDECODE('Lines 1\nLine 2'))

STRINGTOUTF8

STRINGTOUTF8(string)

Encodes a string to a byte array using the UTF8 encoding format. This
method returns bytes.

Example:

CALL UTF8TOSTRING(STRINGTOUTF8('This is a test'))

SUBSTRING

SUBSTRING ({string|bytes} FROM startInt [FOR lengthInt])
| { { SUBSTRING | SUBSTR } ({string|bytes}, startInt [, lengthInt]) }

Returns a substring of a string starting at a position. If the start index is
negative, then the start index is relative to the end of the string. The
length is optional.

Example:

CALL SUBSTRING('[Hello]' FROM 2 FOR 5);
CALL SUBSTRING('hour' FROM 2);

UTF8TOSTRING

UTF8TOSTRING(bytes)

Decodes a byte array in the UTF8 format to a string.

Example:

CALL UTF8TOSTRING(STRINGTOUTF8('This is a test'))

QUOTE_IDENT

QUOTE_IDENT(string)

254 of 436

Quotes the specified identifier. Identifier is surrounded by double quotes.
If identifier contains double quotes they are repeated twice.

Example:

QUOTE_IDENT('Column 1')

XMLATTR

XMLATTR(nameString, valueString)

Creates an XML attribute element of the form name=value. The value is
encoded as XML text. This method returns a string.

Example:

CALL XMLNODE('a', XMLATTR('href', 'https://h2database.com'))

XMLNODE

XMLNODE(elementString [, attributesString [, contentString [,
indentBoolean]]])

Create an XML node element. An empty or null attribute string means no
attributes are set. An empty or null content string means the node is
empty. The content is indented by default if it contains a newline. This
method returns a string.

Example:

CALL XMLNODE('a', XMLATTR('href', 'https://h2database.com'), 'H2')

XMLCOMMENT

XMLCOMMENT(commentString)

Creates an XML comment. Two dashes (--) are converted to - -. This
method returns a string.

Example:

CALL XMLCOMMENT('Test')

XMLCDATA

XMLCDATA(valueString)

255 of 436

Creates an XML CDATA element. If the value contains]]>, an XML text
element is created instead. This method returns a string.

Example:

CALL XMLCDATA('data')

XMLSTARTDOC

XMLSTARTDOC()

Returns the XML declaration. The result is always <?xml version=1.0?>.

Example:

CALL XMLSTARTDOC()

XMLTEXT

XMLTEXT(valueString [, escapeNewlineBoolean])

Creates an XML text element. If enabled, newline and linefeed is
converted to an XML entity (&#). This method returns a string.

Example:

CALL XMLTEXT('test')

TO_CHAR

TO_CHAR(value [, formatString[, nlsParamString]])

Oracle-compatible TO_CHAR function that can format a timestamp, a
number, or text.

Example:

CALL TO_CHAR(TIMESTAMP '2010-01-01 00:00:00', 'DD MON, YYYY')

TRANSLATE

TRANSLATE(value, searchString, replacementString)

Oracle-compatible TRANSLATE function that replaces a sequence of
characters in a string with another set of characters.

Example:

256 of 436

CALL TRANSLATE('Hello world', 'eo', 'EO')

Time and Date Functions

CURRENT_DATE

CURRENT_DATE

Returns the current date.

These functions return the same value within a transaction (default) or
within a command depending on database mode.

SET TIME ZONE command reevaluates the value for these functions using
the same original UTC timestamp of transaction.

Example:

CURRENT_DATE

CURRENT_TIME

CURRENT_TIME [(int)]

Returns the current time with time zone. If fractional seconds precision is
specified it should be from 0 to 9, 0 is default. The specified value can be
used only to limit precision of a result. The actual maximum available
precision depends on operating system and JVM and can be 3
(milliseconds) or higher. Higher precision is not available before Java 9.

This function returns the same value within a transaction (default) or
within a command depending on database mode.

SET TIME ZONE command reevaluates the value for this function using the
same original UTC timestamp of transaction.

Example:

CURRENT_TIME
CURRENT_TIME(9)

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP [(int)]

257 of 436

Returns the current timestamp with time zone. Time zone offset is set to a
current time zone offset. If fractional seconds precision is specified it
should be from 0 to 9, 6 is default. The specified value can be used only to
limit precision of a result. The actual maximum available precision
depends on operating system and JVM and can be 3 (milliseconds) or
higher. Higher precision is not available before Java 9.

This function returns the same value within a transaction (default) or
within a command depending on database mode.

SET TIME ZONE command reevaluates the value for this function using the
same original UTC timestamp of transaction.

Example:

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP(9)

LOCALTIME

LOCALTIME [(int)]

Returns the current time without time zone. If fractional seconds precision
is specified it should be from 0 to 9, 0 is default. The specified value can
be used only to limit precision of a result. The actual maximum available
precision depends on operating system and JVM and can be 3
(milliseconds) or higher. Higher precision is not available before Java 9.

These functions return the same value within a transaction (default) or
within a command depending on database mode.

SET TIME ZONE command reevaluates the value for these functions using
the same original UTC timestamp of transaction.

Example:

LOCALTIME
LOCALTIME(9)

LOCALTIMESTAMP

LOCALTIMESTAMP [(int)]

Returns the current timestamp without time zone. If fractional seconds
precision is specified it should be from 0 to 9, 6 is default. The specified

258 of 436

value can be used only to limit precision of a result. The actual maximum
available precision depends on operating system and JVM and can be 3
(milliseconds) or higher. Higher precision is not available before Java 9.

The returned value has date and time without time zone information. If
time zone has DST transitions the returned values are ambiguous during
transition from DST to normal time. For absolute timestamps use the
CURRENT_TIMESTAMP function and TIMESTAMP WITH TIME ZONE data
type.

These functions return the same value within a transaction (default) or
within a command depending on database mode.

SET TIME ZONE reevaluates the value for these functions using the same
original UTC timestamp of transaction.

Example:

LOCALTIMESTAMP
LOCALTIMESTAMP(9)

DATEADD

{ DATEADD| TIMESTAMPADD } (datetimeField, addIntLong, dateAndTime)

Adds units to a date-time value. The datetimeField indicates the unit. Use
negative values to subtract units. addIntLong may be a long value when
manipulating milliseconds, microseconds, or nanoseconds otherwise its
range is restricted to int. This method returns a value with the same type
as specified value if unit is compatible with this value. If specified field is a
HOUR, MINUTE, SECOND, MILLISECOND, etc and value is a DATE value
DATEADD returns combined TIMESTAMP. Fields DAY, MONTH, YEAR,
WEEK, etc are not allowed for TIME values. Fields TIMEZONE_HOUR,
TIMEZONE_MINUTE, and TIMEZONE_SECOND are only allowed for
TIMESTAMP WITH TIME ZONE values.

Example:

DATEADD(MONTH, 1, DATE '2001-01-31')

DATEDIFF

{ DATEDIFF | TIMESTAMPDIFF } (datetimeField, aDateAndTime,
bDateAndTime)

259 of 436

Returns the number of crossed unit boundaries between two date/time
values. This method returns a long. The datetimeField indicates the unit.
Only TIMEZONE_HOUR, TIMEZONE_MINUTE, and TIMEZONE_SECOND fields
use the time zone offset component. With all other fields if date/time
values have time zone offset component it is ignored.

Example:

DATEDIFF(YEAR, T1.CREATED, T2.CREATED)

DATE_TRUNC

DATE_TRUNC(datetimeField, dateAndTime)

Truncates the specified date-time value to the specified field.

Example:

DATE_TRUNC(DAY, TIMESTAMP '2010-01-03 10:40:00');

LAST_DAY

LAST_DAY(date | timestamp | timestampWithTimeZone | string)

Returns the last day of the month that contains the specified date-time
value. This function returns a date.

Example:

LAST_DAY(DAY, DATE '2020-02-05');

DAYNAME

DAYNAME(dateAndTime)

Returns the name of the day (in English).

Example:

DAYNAME(CREATED)

DAY_OF_MONTH

DAY_OF_MONTH({dateAndTime|interval})

Returns the day of the month (1-31).

This function is deprecated, use EXTRACT instead of it.
260 of 436

Example:

DAY_OF_MONTH(CREATED)

DAY_OF_WEEK

DAY_OF_WEEK(dateAndTime)

Returns the day of the week (1-7), locale-specific.

This function is deprecated, use EXTRACT instead of it.

Example:

DAY_OF_WEEK(CREATED)

ISO_DAY_OF_WEEK

ISO_DAY_OF_WEEK(dateAndTime)

Returns the ISO day of the week (1 means Monday).

This function is deprecated, use EXTRACT instead of it.

Example:

ISO_DAY_OF_WEEK(CREATED)

DAY_OF_YEAR

DAY_OF_YEAR({dateAndTime|interval})

Returns the day of the year (1-366).

This function is deprecated, use EXTRACT instead of it.

Example:

DAY_OF_YEAR(CREATED)

EXTRACT

EXTRACT (datetimeField FROM { dateAndTime | interval })

Returns a value of the specific time unit from a date/time value. This
method returns a numeric value with EPOCH field and an int for all other
fields.

Example:

261 of 436

EXTRACT(SECOND FROM CURRENT_TIMESTAMP)

FORMATDATETIME

FORMATDATETIME (dateAndTime, formatString
[, localeString [, timeZoneString]])

Formats a date, time or timestamp as a string. The most important format
characters are: y year, M month, d day, H hour, m minute, s second. For
details of the format, see java.time.format.DateTimeFormatter. Allowed
format characters depend on data type of passed date/time value.

If timeZoneString is specified, it is used in formatted string if formatString
has time zone. For TIME and TIME WITH TIME ZONE values the specified
time zone must have a fixed offset.

If TIME WITH TIME ZONE is passed and timeZoneString is specified, the
time is converted to the specified time zone offset and its UTC value is
preserved. If TIMESTAMP WITH TIME ZONE is passed and timeZoneString
is specified, the timestamp is converted to the specified time zone and its
UTC value is preserved.

This method returns a string.

See also cast specification.

Example:

CALL FORMATDATETIME(TIMESTAMP '2001-02-03 04:05:06',
 'EEE, d MMM yyyy HH:mm:ss z', 'en', 'GMT')

HOUR

HOUR({dateAndTime|interval})

Returns the hour (0-23) from a date/time value.

This function is deprecated, use EXTRACT instead of it.

Example:

HOUR(CREATED)

MINUTE

MINUTE({dateAndTime|interval})

262 of 436

Returns the minute (0-59) from a date/time value.

This function is deprecated, use EXTRACT instead of it.

Example:

MINUTE(CREATED)

MONTH

MONTH({dateAndTime|interval})

Returns the month (1-12) from a date/time value.

This function is deprecated, use EXTRACT instead of it.

Example:

MONTH(CREATED)

MONTHNAME

MONTHNAME(dateAndTime)

Returns the name of the month (in English).

Example:

MONTHNAME(CREATED)

PARSEDATETIME

PARSEDATETIME(string, formatString
[, localeString [, timeZoneString]])

Parses a string and returns a TIMESTAMP WITH TIME ZONE value. The
most important format characters are: y year, M month, d day, H hour, m
minute, s second. For details of the format, see
java.time.format.DateTimeFormatter.

If timeZoneString is specified, it is used as default.

See also cast specification.

Example:

CALL PARSEDATETIME('Sat, 3 Feb 2001 03:05:06 GMT',
 'EEE, d MMM yyyy HH:mm:ss z', 'en', 'GMT')

263 of 436

QUARTER

QUARTER(dateAndTime)

Returns the quarter (1-4) from a date/time value.

This function is deprecated, use EXTRACT instead of it.

Example:

QUARTER(CREATED)

SECOND

SECOND(dateAndTime)

Returns the second (0-59) from a date/time value.

This function is deprecated, use EXTRACT instead of it.

Example:

SECOND(CREATED|interval)

WEEK

WEEK(dateAndTime)

Returns the week (1-53) from a date/time value.

This function is deprecated, use EXTRACT instead of it.

This function uses the current system locale.

Example:

WEEK(CREATED)

ISO_WEEK

ISO_WEEK(dateAndTime)

Returns the ISO week (1-53) from a date/time value.

This function is deprecated, use EXTRACT instead of it.

This function uses the ISO definition when first week of year should have
at least four days and week is started with Monday.

Example:

264 of 436

ISO_WEEK(CREATED)

YEAR

YEAR({dateAndTime|interval})

Returns the year from a date/time value.

This function is deprecated, use EXTRACT instead of it.

Example:

YEAR(CREATED)

ISO_YEAR

ISO_YEAR(dateAndTime)

Returns the ISO week year from a date/time value.

This function is deprecated, use EXTRACT instead of it.

Example:

ISO_YEAR(CREATED)

System Functions

ABORT_SESSION

ABORT_SESSION(sessionInt)

Cancels the currently executing statement of another session. Closes the
session and releases the allocated resources. Returns true if the session
was closed, false if no session with the given id was found.

If a client was connected while its session was aborted it will see an error.

Admin rights are required to execute this command.

Example:

CALL ABORT_SESSION(3)

ARRAY_GET

ARRAY_GET(arrayExpression, indexExpression)

265 of 436

Returns element at the specified 1-based index from an array.

This function is deprecated, use [array element reference]
(https://www.h2database.com/html/#array_element_reference) instead of
it.

Returns NULL if array or index is NULL.

Example:

CALL ARRAY_GET(ARRAY['Hello', 'World'], 2)

CARDINALITY

{ CARDINALITY | { ARRAY_LENGTH } } (arrayExpression)

Returns the length of an array or JSON array. Returns NULL if the specified
array is NULL.

Example:

CALL CARDINALITY(ARRAY['Hello', 'World'])
CALL CARDINALITY(JSON '[1, 2, 3]')

ARRAY_CONTAINS

ARRAY_CONTAINS(arrayExpression, value)

Returns a boolean TRUE if the array contains the value or FALSE if it does
not contain it. Returns NULL if the specified array is NULL.

Example:

CALL ARRAY_CONTAINS(ARRAY['Hello', 'World'], 'Hello')

ARRAY_CAT

ARRAY_CAT(arrayExpression, arrayExpression)

Returns the concatenation of two arrays.

This function is deprecated, use || instead of it.

Returns NULL if any parameter is NULL.

Example:

CALL ARRAY_CAT(ARRAY[1, 2], ARRAY[3, 4])

266 of 436

https://www.h2database.com/html/#array_element_reference)

ARRAY_APPEND

ARRAY_APPEND(arrayExpression, value)

Append an element to the end of an array.

This function is deprecated, use || instead of it.

Returns NULL if any parameter is NULL.

Example:

CALL ARRAY_APPEND(ARRAY[1, 2], 3)

ARRAY_MAX_CARDINALITY

ARRAY_MAX_CARDINALITY(arrayExpression)

Returns the maximum allowed array cardinality (length) of the declared
data type of argument.

Example:

SELECT ARRAY_MAX_CARDINALITY(COL1) FROM TEST FETCH FIRST ROW
ONLY;

TRIM_ARRAY

TRIM_ARRAY(arrayExpression, int)

Removes the specified number of elements from the end of the array.

Returns NULL if second parameter is NULL or if first parameter is NULL
and second parameter is not negative. Throws exception if second
parameter is negative or larger than number of elements in array.
Otherwise returns the truncated array.

Example:

CALL TRIM_ARRAY(ARRAY[1, 2, 3, 4], 1)

ARRAY_SLICE

ARRAY_SLICE(arrayExpression, lowerBoundInt, upperBoundInt)

Returns elements from the array as specified by the lower and upper
bound parameters. Both parameters are inclusive and the first element

267 of 436

has index 1, i.e. ARRAY_SLICE(a, 2, 2) has only the second element.
Returns NULL if any parameter is NULL or if an index is out of bounds.

Example:

CALL ARRAY_SLICE(ARRAY[1, 2, 3, 4], 1, 3)

AUTOCOMMIT

AUTOCOMMIT()

Returns true if auto commit is switched on for this session.

Example:

AUTOCOMMIT()

CANCEL_SESSION

CANCEL_SESSION(sessionInt)

Cancels the currently executing statement of another session. Returns
true if the statement was canceled, false if the session is closed or no
statement is currently executing.

Admin rights are required to execute this command.

Example:

CANCEL_SESSION(3)

CASEWHEN Function

CASEWHEN(boolean, aValue, bValue)

Returns 'aValue' if the boolean expression is true, otherwise 'bValue'.

This function is deprecated, use CASE instead of it.

Example:

CASEWHEN(ID=1, 'A', 'B')

COALESCE

{ COALESCE | { NVL } } (aValue, bValue [,...])
| IFNULL(aValue, bValue)

268 of 436

Returns the first value that is not null.

Example:

COALESCE(A, B, C)

CONVERT

CONVERT(value, dataTypeOrDomain)

Converts a value to another data type.

This function is deprecated, use CAST instead of it.

Example:

CONVERT(NAME, INT)

CURRVAL

CURRVAL([schemaNameString,] sequenceString)

Returns the latest generated value of the sequence for the current
session. Current value may only be requested after generation of the
sequence value in the current session. This method exists only for
compatibility, when it isn't required use CURRENT VALUE FOR
sequenceName instead. If the schema name is not set, the current
schema is used. When sequence is not found, the uppercase name is also
checked. This method returns a long.

Example:

CURRVAL('TEST_SEQ')

CSVWRITE

CSVWRITE (fileNameString, queryString [, csvOptions [, lineSepString]])

Writes a CSV (comma separated values). The file is overwritten if it exists.
If only a file name is specified, it will be written to the current working
directory. For each parameter, NULL means the default value should be
used. The default charset is the default value for this system, and the
default field separator is a comma.

The values are converted to text using the default string representation; if
another conversion is required you need to change the select statement

269 of 436

accordingly. The parameter nullString is used when writing NULL (by
default nothing is written when NULL appears). The default line separator
is the default value for this system (system property line.separator).

The returned value is the number or rows written. Admin rights are
required to execute this command.

Example:

CALL CSVWRITE('data/test.csv', 'SELECT * FROM TEST');
CALL CSVWRITE('data/test2.csv', 'SELECT * FROM TEST', 'charset=UTF-8
fieldSeparator=|');
-- Write a tab-separated file
CALL CSVWRITE('data/test.tsv', 'SELECT * FROM TEST', 'charset=UTF-8
fieldSeparator=' || CHAR(9));

CURRENT_SCHEMA

CURRENT_SCHEMA | SCHEMA()

Returns the name of the default schema for this session.

Example:

CALL CURRENT_SCHEMA

CURRENT_CATALOG

CURRENT_CATALOG | DATABASE()

Returns the name of the database.

Example:

CALL CURRENT_CATALOG

DATABASE_PATH

DATABASE_PATH()

Returns the directory of the database files and the database name, if it is
file based. Returns NULL otherwise.

Example:

CALL DATABASE_PATH();

270 of 436

DATA_TYPE_SQL

DATA_TYPE_SQL
(objectSchemaString, objectNameString, objectTypeString,
typeIdentifierString)

Returns SQL representation of data type of the specified constant,
domain, table column, routine result or argument.

For constants object type is 'CONSTANT' and type identifier is the value of
INFORMATION_SCHEMA.CONSTANTS.DTD_IDENTIFIER.

For domains object type is 'DOMAIN' and type identifier is the value of
INFORMATION_SCHEMA.DOMAINS.DTD_IDENTIFIER.

For columns object type is 'TABLE' and type identifier is the value of
INFORMATION_SCHEMA.COLUMNS.DTD_IDENTIFIER.

For routines object name is the value of
INFORMATION_SCHEMA.ROUTINES.SPECIFIC_NAME, object type is
'ROUTINE', and type identifier is the value of
INFORMATION_SCHEMA.ROUTINES.DTD_IDENTIFIER for data type of the
result and the value of
INFORMATION_SCHEMA.PARAMETERS.DTD_IDENTIFIER for data types of
arguments. Aggregate functions aren't supported by this function,
because their data type isn't statically known.

This function returns NULL if any argument is NULL, object type is not
valid, or object isn't found.

Example:

DATA_TYPE_SQL('PUBLIC', 'C', 'CONSTANT', 'TYPE')
DATA_TYPE_SQL('PUBLIC', 'D', 'DOMAIN', 'TYPE')
DATA_TYPE_SQL('PUBLIC', 'T', 'TABLE', '1')
DATA_TYPE_SQL('PUBLIC', 'R_1', 'ROUTINE', 'RESULT')
DATA_TYPE_SQL('PUBLIC', 'R_1', 'ROUTINE', '1')
COALESCE(
 QUOTE_IDENT(DOMAIN_SCHEMA) || '.' ||
QUOTE_IDENT(DOMAIN_NAME),
 DATA_TYPE_SQL(TABLE_SCHEMA, TABLE_NAME, 'TABLE',
DTD_IDENTIFIER))

271 of 436

DB_OBJECT_ID

DB_OBJECT_ID({{'ROLE'|'SETTING'|'SCHEMA'|'USER'}, objectNameString
| {'CONSTANT'|'CONSTRAINT'|'DOMAIN'|'INDEX'|'ROUTINE'|'SEQUENCE'
 |'SYNONYM'|'TABLE'|'TRIGGER'}, schemaNameString,
objectNameString })

Returns internal identifier of the specified database object as integer
value or NULL if object doesn't exist.

Admin rights are required to execute this function.

Example:

CALL DB_OBJECT_ID('ROLE', 'MANAGER');
CALL DB_OBJECT_ID('TABLE', 'PUBLIC', 'MY_TABLE');

DB_OBJECT_SQL

DB_OBJECT_SQL({{'ROLE'|'SETTING'|'SCHEMA'|'USER'},
objectNameString
| {'CONSTANT'|'CONSTRAINT'|'DOMAIN'|'INDEX'|'ROUTINE'|'SEQUENCE'
 |'SYNONYM'|'TABLE'|'TRIGGER'}, schemaNameString,
objectNameString })

Returns internal SQL definition of the specified database object or NULL if
object doesn't exist or it is a system object without SQL definition.

This function should not be used to analyze structure of the object by
machine code. Internal SQL representation may contain undocumented
non-standard clauses and may be different in different versions of H2.
Objects are described in the INFORMATION_SCHEMA in machine-readable
way.

Admin rights are required to execute this function.

Example:

CALL DB_OBJECT_SQL('ROLE', 'MANAGER');
CALL DB_OBJECT_SQL('TABLE', 'PUBLIC', 'MY_TABLE');

DB_OBJECT_SIZE

DB_OBJECT_SIZE({'INDEX'|'TABLE'}, schemaNameString,
objectNameString)

272 of 436

Returns the approximate amount of space used by the specified table
(excluding its indexes) or index. Only size of version used by the current
transaction is estimated. Size of large LOBs currently is not included into
estimation. This function may be expensive since it has to load every page
in the table or index. Use DB_OBJECT_APPROXIMATE_SIZE for a faster
coarse approximation.

Example:

CALL DB_OBJECT_SIZE('TABLE', 'PUBLIC', 'MY_TABLE');

DB_OBJECT_TOTAL_SIZE

DB_OBJECT_TOTAL_SIZE('TABLE', schemaNameString, objectNameString)

Returns the approximate amount of space used by the specified table and
all its indexes. Only size of version used by the current transaction is
estimated. Size of large LOBs currently is not included into estimation.
This function may be expensive since it has to load every page in the
table and its indexes. Use DB_OBJECT_APPROXIMATE_TOTAL_SIZE for a
faster coarse approximation.

Example:

CALL DB_OBJECT_TOTAL_SIZE('TABLE', 'PUBLIC', 'MY_TABLE');

DB_OBJECT_APPROXIMATE_SIZE

DB_OBJECT_APPROXIMATE_SIZE({'INDEX'|'TABLE'}, schemaNameString,
objectNameString)

Returns the coarse approximate amount of space used by the specified
table (excluding its indexes) or index. Only size of version used by the
current transaction is estimated. Size of large LOBs currently is not
included into estimation.

Example:

CALL DB_OBJECT_APPROXIMATE_SIZE('TABLE', 'PUBLIC', 'MY_TABLE');

DB_OBJECT_APPROXIMATE_TOTAL_SIZE

DB_OBJECT_APPROXIMATE_TOTAL_SIZE('TABLE', schemaNameString,
objectNameString)

273 of 436

Returns the coarse approximate amount of space used by the specified
table and all its indexes. Only size of version used by the current
transaction is estimated. Size of large LOBs currently is not included into
estimation.

Example:

CALL DB_OBJECT_APPROXIMATE_TOTAL_SIZE('TABLE', 'PUBLIC',
'MY_TABLE');

DECODE

DECODE(value, whenValue, thenValue [,...])

Returns the first matching value. NULL is considered to match NULL. If no
match was found, then NULL or the last parameter (if the parameter count
is even) is returned. This function is provided for Oracle compatibility, use
CASE instead of it.

Example:

CALL DECODE(RAND()>0.5, 0, 'Red', 1, 'Black');

DISK_SPACE_USED

DISK_SPACE_USED(tableNameString)

Returns the approximate amount of space used by the table specified.
Only size of version used by the current transaction is estimated. Does not
currently take into account indexes or LOB's. This function may be
expensive since it has to load every page in the table. This function is
deprecated, use DB_OBJECT_SIZE instead of it.

Example:

CALL DISK_SPACE_USED('my_table');

SIGNAL

SIGNAL(sqlStateString, messageString)

Throw an SQLException with the passed SQLState and reason.

Example:

CALL SIGNAL('23505', 'Duplicate user ID: ' || user_id);

274 of 436

ESTIMATED_ENVELOPE

ESTIMATED_ENVELOPE(tableNameString, columnNameString)

Returns the estimated minimum bounding box that encloses all specified
GEOMETRY values. Only 2D coordinate plane is supported. NULL values
are ignored. Column must have a spatial index. This function is fast, but
estimation may include uncommitted data (including data from other
transactions), may return approximate bounds, or be different with actual
value due to other reasons. Use with caution. If estimation is not available
this function returns NULL. For accurate and reliable result use ESTIMATE
aggregate function instead.

Example:

CALL ESTIMATED_ENVELOPE('MY_TABLE', 'GEOMETRY_COLUMN');

FILE_READ

FILE_READ(fileNameString [,encodingString])

Returns the contents of a file. If only one parameter is supplied, the data
are returned as a BLOB. If two parameters are used, the data is returned
as a CLOB (text). The second parameter is the character set to use, NULL
meaning the default character set for this system.

File names and URLs are supported. To read a stream from the classpath,
use the prefix classpath:.

Admin rights are required to execute this command.

Example:

SELECT LENGTH(FILE_READ('~/.h2.server.properties')) LEN;
SELECT FILE_READ('http://localhost:8182/stylesheet.css', NULL) CSS;

FILE_WRITE

FILE_WRITE(blobValue, fileNameString)

Write the supplied parameter into a file. Return the number of bytes
written.

Write access to folder, and admin rights are required to execute this
command.

275 of 436

Example:

SELECT FILE_WRITE('Hello world', '/tmp/hello.txt')) LEN;

GREATEST

GREATEST(aValue, bValue [,...]) [{RESPECT|IGNORE} NULLS]

Returns the largest value or NULL if any value is NULL or the largest value
cannot be determined. For example, ROW (NULL, 1) is neither equal to nor
smaller than nor larger than ROW (1, 1). If IGNORE NULLS is specified,
NULL values are ignored.

Example:

CALL GREATEST(1, 2, 3);

LEAST

LEAST(aValue, bValue [,...]) [{RESPECT|IGNORE} NULLS]

Returns the smallest value or NULL if any value is NULL or the smallest
value cannot be determined. For example, ROW (NULL, 1) is neither equal
to nor smaller than nor larger than ROW (1, 1). If IGNORE NULLS is
specified, NULL values are ignored.

Example:

CALL LEAST(1, 2, 3);

LOCK_MODE

LOCK_MODE()

Returns the current lock mode. See SET LOCK_MODE. This method returns
an int.

Example:

CALL LOCK_MODE();

LOCK_TIMEOUT

LOCK_TIMEOUT()

Returns the lock timeout of the current session (in milliseconds).

276 of 436

Example:

LOCK_TIMEOUT()

MEMORY_FREE

MEMORY_FREE()

Returns the free memory in KB (where 1024 bytes is a KB). This method
returns a long. The garbage is run before returning the value. Admin
rights are required to execute this command.

Example:

MEMORY_FREE()

MEMORY_USED

MEMORY_USED()

Returns the used memory in KB (where 1024 bytes is a KB). This method
returns a long. The garbage is run before returning the value. Admin
rights are required to execute this command.

Example:

MEMORY_USED()

NEXTVAL

NEXTVAL ([schemaNameString,] sequenceString)

Increments the sequence and returns its value. The current value of the
sequence and the last identity in the current session are updated with the
generated value. Used values are never re-used, even when the
transaction is rolled back. This method exists only for compatibility, it's
recommended to use the standard NEXT VALUE FOR sequenceName
instead. If the schema name is not set, the current schema is used. When
sequence is not found, the uppercase name is also checked. This method
returns a long.

Example:

NEXTVAL('TEST_SEQ')

277 of 436

NULLIF

NULLIF(aValue, bValue)

Returns NULL if 'a' is equal to 'b', otherwise 'a'.

Example:

NULLIF(A, B)
A / NULLIF(B, 0)

NVL2

NVL2(testValue, aValue, bValue)

If the test value is null, then 'b' is returned. Otherwise, 'a' is returned. The
data type of the returned value is the data type of 'a' if this is a text type.

This function is provided for Oracle compatibility, use CASE or COALESCE
instead of it.

Example:

NVL2(X, 'not null', 'null')

READONLY

READONLY()

Returns true if the database is read-only.

Example:

READONLY()

ROWNUM

ROWNUM()

Returns the number of the current row. This method returns a long value.
It is supported for SELECT statements, as well as for DELETE and UPDATE.
The first row has the row number 1, and is calculated before ordering and
grouping the result set, but after evaluating index conditions (even when
the index conditions are specified in an outer query). Use the
ROW_NUMBER() OVER () function to get row numbers after grouping or in
specified order.

278 of 436

Example:

SELECT ROWNUM(), * FROM TEST;
SELECT ROWNUM(), * FROM (SELECT * FROM TEST ORDER BY NAME);
SELECT ID FROM (SELECT T.*, ROWNUM AS R FROM TEST T) WHERE R
BETWEEN 2 AND 3;

SESSION_ID

SESSION_ID()

Returns the unique session id number for the current database
connection. This id stays the same while the connection is open. This
method returns an int. The database engine may re-use a session id after
the connection is closed.

Example:

CALL SESSION_ID()

SET

SET(@variableName, value)

Updates a variable with the given value. The new value is returned. When
used in a query, the value is updated in the order the rows are read. When
used in a subquery, not all rows might be read depending on the query
plan. This can be used to implement running totals / cumulative sums.

Example:

SELECT X, SET(@I, COALESCE(@I, 0)+X) RUNNING_TOTAL FROM
SYSTEM_RANGE(1, 10)

TRANSACTION_ID

TRANSACTION_ID()

Returns the current transaction id for this session. This method returns
NULL if there is no uncommitted change, or if the database is not
persisted. Otherwise a value of the following form is returned: logFileId-
position-sessionId. This method returns a string. The value is unique
across database restarts (values are not re-used).

Example:

279 of 436

CALL TRANSACTION_ID()

TRUNCATE_VALUE

TRUNCATE_VALUE(value, precisionInt, forceBoolean)

Truncate a value to the required precision. If force flag is set to FALSE
fixed precision values are not truncated. The method returns a value with
the same data type as the first parameter.

Example:

CALL TRUNCATE_VALUE(X, 10, TRUE);

CURRENT_PATH

CURRENT_PATH

Returns the comma-separated list of quoted schema names where user-
defined functions are searched when they are referenced without the
schema name.

Example:

CURRENT_PATH

CURRENT_ROLE

CURRENT_ROLE

Returns the name of the PUBLIC role.

Example:

CURRENT_ROLE

CURRENT_USER

CURRENT_USER | SESSION_USER | SYSTEM_USER | USER

Returns the name of the current user of this session.

Example:

CURRENT_USER

280 of 436

H2VERSION

H2VERSION()

Returns the H2 version as a String.

Example:

H2VERSION()

JSON Functions

JSON_OBJECT

JSON_OBJECT(
[{{[KEY] string VALUE expression} | {string : expression}} [,...]]
[{ NULL | ABSENT } ON NULL]
[{ WITH | WITHOUT } UNIQUE KEYS]
)

Returns a JSON object constructed from the specified properties. If
ABSENT ON NULL is specified properties with NULL value are not included
in the object. If WITH UNIQUE KEYS is specified the constructed object is
checked for uniqueness of keys, nested objects, if any, are checked too.

Example:

JSON_OBJECT('id': 100, 'name': 'Joe', 'groups': '[2,5]' FORMAT JSON);

JSON_ARRAY

JSON_ARRAY(
[expression [,...]]|{(query) [FORMAT JSON]}
[{ NULL | ABSENT } ON NULL]
)

Returns a JSON array constructed from the specified values or from the
specified single-column subquery. If NULL ON NULL is specified NULL
values are included in the array.

Example:

JSON_ARRAY(10, 15, 20);
JSON_ARRAY(JSON_DATA_A FORMAT JSON, JSON_DATA_B FORMAT JSON);
JSON_ARRAY((SELECT J FROM PROPS) FORMAT JSON);

281 of 436

Table Functions

CSVREAD

CSVREAD(fileNameString [, columnsString [, csvOptions]])

Returns the result set of reading the CSV (comma separated values) file.
For each parameter, NULL means the default value should be used.

If the column names are specified (a list of column names separated with
the fieldSeparator), those are used, otherwise (or if they are set to NULL)
the first line of the file is interpreted as the column names. In that case,
column names that contain no special characters (only letters, '_', and
digits; similar to the rule for Java identifiers) are processed is the same
way as unquoted identifiers and therefore case of characters may be
changed. Other column names are processed as quoted identifiers and
case of characters is preserved. To preserve the case of column names
unconditionally use caseSensitiveColumnNames option.

The default charset is the default value for this system, and the default
field separator is a comma. Missing unquoted values as well as data that
matches nullString is parsed as NULL. All columns are of type VARCHAR.

The BOM (the byte-order-mark) character 0xfeff at the beginning of the
file is ignored.

This function can be used like a table: SELECT * FROM CSVREAD(...).

Instead of a file, a URL may be used, for example
jar:file:///c:/temp/example.zip!/org/example/nested.csv. To read a stream
from the classpath, use the prefix classpath:. To read from HTTP, use the
prefix http: (as in a browser).

For performance reason, CSVREAD should not be used inside a join.
Instead, import the data first (possibly into a temporary table) and then
use the table.

Admin rights are required to execute this command.

Example:

SELECT * FROM CSVREAD('test.csv');
-- Read a file containing the columns ID, NAME with
SELECT * FROM CSVREAD('test2.csv', 'ID|NAME', 'charset=UTF-8
fieldSeparator=|');

282 of 436

SELECT * FROM CSVREAD('data/test.csv', null, 'rowSeparator=;');
-- Read a tab-separated file
SELECT * FROM CSVREAD('data/test.tsv', null, 'rowSeparator=' ||
CHAR(9));
SELECT "Last Name" FROM CSVREAD('address.csv');
SELECT "Last Name" FROM
CSVREAD('classpath:/org/acme/data/address.csv');

LINK_SCHEMA

LINK_SCHEMA (targetSchemaString, driverString, urlString,
userString, passwordString, sourceSchemaString)

Creates table links for all tables in a schema. If tables with the same name
already exist, they are dropped first. The target schema is created
automatically if it does not yet exist. The driver name may be empty if the
driver is already loaded. The list of tables linked is returned in the form of
a result set. Admin rights are required to execute this command.

Example:

SELECT * FROM LINK_SCHEMA('TEST2', '', 'jdbc:h2:./test2', 'sa', 'sa',
'PUBLIC');

TABLE

{ TABLE | TABLE_DISTINCT }
({ name dataTypeOrDomain = {array|rowValueExpression} } [,...])

Returns the result set. TABLE_DISTINCT removes duplicate rows.

Example:

SELECT * FROM TABLE(V INT = ARRAY[1, 2]);
SELECT * FROM TABLE(ID INT=(1, 2), NAME VARCHAR=('Hello', 'World'));

UNNEST

UNNEST(arrayExpression, [,...]) [WITH ORDINALITY]

Returns the result set. Number of columns is equal to number of
arguments, plus one additional column with row number if WITH
ORDINALITY is specified. Number of rows is equal to length of longest

283 of 436

specified array. If multiple arguments are specified and they have
different length, cells with missing values will contain null values.

Example:

SELECT * FROM UNNEST(ARRAY['a', 'b', 'c']);
SELECT * FROM UNNEST(JSON '["a", "b", "c"]');

284 of 436

Aggregate Functions

Index

General Aggregate Functions

AVG
MAX
MIN
SUM
EVERY
ANY
COUNT
STDDEV_POP
STDDEV_SAMP
VAR_POP
VAR_SAMP
ANY_VALUE
BIT_AND_AGG
BIT_OR_AGG
BIT_XOR_AGG
BIT_NAND_AGG
BIT_NOR_AGG
BIT_XNOR_AGG
ENVELOPE

Binary Set Functions

COVAR_POP
COVAR_SAMP
CORR
REGR_SLOPE
REGR_INTERCEPT
REGR_COUNT
REGR_R2
REGR_AVGX
REGR_AVGY
REGR_SXX

285 of 436

REGR_SYY
REGR_SXY

Ordered Aggregate Functions

LISTAGG
ARRAY_AGG

Hypothetical Set Functions

RANK aggregate
DENSE_RANK aggregate
PERCENT_RANK aggregate
CUME_DIST aggregate

Inverse Distribution Functions

PERCENTILE_CONT
PERCENTILE_DISC
MEDIAN
MODE

JSON Aggregate Functions

JSON_OBJECTAGG
JSON_ARRAYAGG

Details
Non-standard syntax is marked in green. Compatibility-only non-standard
syntax is marked in red, don't use it unless you need it for compatibility
with other databases or old versions of H2.

General Aggregate Functions

AVG

AVG ([DISTINCT|ALL] { numeric | interval })
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The average (mean) value. If no rows are selected, the result is NULL.
Aggregates are only allowed in select statements.

286 of 436

The data type of result is DOUBLE PRECISION for TINYINT, SMALLINT,
INTEGER, and REAL arguments, NUMERIC with additional 10 decimal digits
of precision and scale for BIGINT and NUMERIC arguments; DECFLOAT
with additional 10 decimal digits of precision for DOUBLE PRECISION and
DECFLOAT arguments; INTERVAL with the same leading field precision, all
additional smaller datetime units in interval qualifier, and the maximum
scale for INTERVAL arguments.

Example:

AVG(X)

MAX

MAX(value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The highest value. If no rows are selected, the result is NULL. Aggregates
are only allowed in select statements. The returned value is of the same
data type as the parameter.

Example:

MAX(NAME)

MIN

MIN(value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The lowest value. If no rows are selected, the result is NULL. Aggregates
are only allowed in select statements. The returned value is of the same
data type as the parameter.

Example:

MIN(NAME)

SUM

SUM([DISTINCT|ALL] { numeric | interval | { boolean } })
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The sum of all values. If no rows are selected, the result is NULL.
Aggregates are only allowed in select statements.

287 of 436

The data type of result is BIGINT for BOOLEAN, TINYINT, SMALLINT, and
INTEGER arguments; NUMERIC with additional 10 decimal digits of
precision for BIGINT and NUMERIC arguments; DOUBLE PRECISION for
REAL arguments, DECFLOAT with additional 10 decimal digits of precision
for DOUBLE PRECISION and DECFLOAT arguments; INTERVAL with
maximum precision and the same interval qualifier and scale for INTERVAL
arguments.

Example:

SUM(X)

EVERY

{EVERY| {BOOL_AND}}(boolean)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns true if all expressions are true. If no rows are selected, the result
is NULL. Aggregates are only allowed in select statements.

Example:

EVERY(ID>10)

ANY

{ANY|SOME| {BOOL_OR}}(boolean)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns true if any expression is true. If no rows are selected, the result is
NULL. Aggregates are only allowed in select statements.

Note that if ANY or SOME aggregate function is placed on the right side of
comparison operation or distinct predicate and argument of this function
is a subquery additional parentheses around aggregate function are
required, otherwise it will be parsed as quantified predicate.

Example:

ANY(NAME LIKE 'W%')
A = (ANY((SELECT B FROM T)))

COUNT

COUNT({ * | { [DISTINCT|ALL] expression } })

288 of 436

[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The count of all row, or of the non-null values. This method returns a long.
If no rows are selected, the result is 0. Aggregates are only allowed in
select statements.

Example:

COUNT(*)

STDDEV_POP

STDDEV_POP([DISTINCT|ALL] numeric)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The population standard deviation. This method returns a double. If no
rows are selected, the result is NULL. Aggregates are only allowed in
select statements.

Example:

STDDEV_POP(X)

STDDEV_SAMP

STDDEV_SAMP([DISTINCT|ALL] numeric)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The sample standard deviation. This method returns a double. If less than
two rows are selected, the result is NULL. Aggregates are only allowed in
select statements.

Example:

STDDEV(X)

VAR_POP

VAR_POP([DISTINCT|ALL] numeric)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The population variance (square of the population standard deviation).
This method returns a double. If no rows are selected, the result is NULL.
Aggregates are only allowed in select statements.

Example:

289 of 436

VAR_POP(X)

VAR_SAMP

VAR_SAMP([DISTINCT|ALL] numeric)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The sample variance (square of the sample standard deviation). This
method returns a double. If less than two rows are selected, the result is
NULL. Aggregates are only allowed in select statements.

Example:

VAR_SAMP(X)

ANY_VALUE

ANY_VALUE([DISTINCT|ALL] value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns any non-NULL value from aggregated values. If no rows are
selected, the result is NULL. This function uses the same pseudo random
generator as RAND() function.

If DISTINCT is specified, each distinct value will be returned with
approximately the same probability as other distinct values. If it isn't
specified, more frequent values will be returned with higher probability
than less frequent.

Aggregates are only allowed in select statements.

Example:

ANY_VALUE(X)

BIT_AND_AGG

{{BIT_AND_AGG}|{BIT_AND}}(expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The bitwise AND of all non-null values. If no rows are selected, the result is
NULL. Aggregates are only allowed in select statements.

For non-aggregate function see BITAND.

Example:

290 of 436

BIT_AND_AGG(X)

BIT_OR_AGG

{{BIT_OR_AGG}|{BIT_OR}}(expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The bitwise OR of all non-null values. If no rows are selected, the result is
NULL. Aggregates are only allowed in select statements.

For non-aggregate function see BITOR.

Example:

BIT_OR_AGG(X)

BIT_XOR_AGG

BIT_XOR_AGG([DISTINCT|ALL] expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The bitwise XOR of all non-null values. If no rows are selected, the result is
NULL. Aggregates are only allowed in select statements.

For non-aggregate function see BITXOR.

Example:

BIT_XOR_AGG(X)

BIT_NAND_AGG

BIT_NAND_AGG(expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The bitwise NAND of all non-null values. If no rows are selected, the result
is NULL. Aggregates are only allowed in select statements.

For non-aggregate function see BITNAND.

Example:

BIT_NAND_AGG(X)

BIT_NOR_AGG

BIT_NOR_AGG(expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

291 of 436

The bitwise NOR of all non-null values. If no rows are selected, the result is
NULL. Aggregates are only allowed in select statements.

For non-aggregate function see BITNOR.

Example:

BIT_NOR_AGG(X)

BIT_XNOR_AGG

BIT_XNOR_AGG([DISTINCT|ALL] expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The bitwise XNOR of all non-null values. If no rows are selected, the result
is NULL. Aggregates are only allowed in select statements.

For non-aggregate function see BITXNOR.

Example:

BIT_XNOR_AGG(X)

ENVELOPE

ENVELOPE(value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the minimum bounding box that encloses all specified GEOMETRY
values. Only 2D coordinate plane is supported. NULL values are ignored in
the calculation. If no rows are selected, the result is NULL. Aggregates are
only allowed in select statements.

Example:

ENVELOPE(X)

Binary Set Functions

COVAR_POP

COVAR_POP(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The population covariance. This method returns a double. Rows in which
either argument is NULL are ignored in the calculation. If no rows are

292 of 436

selected, the result is NULL. Aggregates are only allowed in select
statements.

Example:

COVAR_POP(Y, X)

COVAR_SAMP

COVAR_SAMP(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The sample covariance. This method returns a double. Rows in which
either argument is NULL are ignored in the calculation. If less than two
rows are selected, the result is NULL. Aggregates are only allowed in
select statements.

Example:

COVAR_SAMP(Y, X)

CORR

CORR(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Pearson's correlation coefficient. This method returns a double. Rows in
which either argument is NULL are ignored in the calculation. If no rows
are selected, the result is NULL. Aggregates are only allowed in select
statements.

Example:

CORR(Y, X)

REGR_SLOPE

REGR_SLOPE(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The slope of the line. This method returns a double. Rows in which either
argument is NULL are ignored in the calculation. If no rows are selected,
the result is NULL. Aggregates are only allowed in select statements.

Example:

293 of 436

REGR_SLOPE(Y, X)

REGR_INTERCEPT

REGR_INTERCEPT(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The y-intercept of the regression line. This method returns a double. Rows
in which either argument is NULL are ignored in the calculation. If no rows
are selected, the result is NULL. Aggregates are only allowed in select
statements.

Example:

REGR_INTERCEPT(Y, X)

REGR_COUNT

REGR_COUNT(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the number of rows in the group. This method returns a long.
Rows in which either argument is NULL are ignored in the calculation. If no
rows are selected, the result is 0. Aggregates are only allowed in select
statements.

Example:

REGR_COUNT(Y, X)

REGR_R2

REGR_R2(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The coefficient of determination. This method returns a double. Rows in
which either argument is NULL are ignored in the calculation. If no rows
are selected, the result is NULL. Aggregates are only allowed in select
statements.

Example:

REGR_R2(Y, X)

294 of 436

REGR_AVGX

REGR_AVGX(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The average (mean) value of dependent expression. Rows in which either
argument is NULL are ignored in the calculation. If no rows are selected,
the result is NULL. For details about the data type see AVG. Aggregates
are only allowed in select statements.

Example:

REGR_AVGX(Y, X)

REGR_AVGY

REGR_AVGY(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The average (mean) value of independent expression. Rows in which
either argument is NULL are ignored in the calculation. If no rows are
selected, the result is NULL. For details about the data type see AVG.
Aggregates are only allowed in select statements.

Example:

REGR_AVGY(Y, X)

REGR_SXX

REGR_SXX(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The the sum of squares of independent expression. Rows in which either
argument is NULL are ignored in the calculation. If no rows are selected,
the result is NULL. Aggregates are only allowed in select statements.

Example:

REGR_SXX(Y, X)

REGR_SYY

REGR_SYY(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

295 of 436

The the sum of squares of dependent expression. Rows in which either
argument is NULL are ignored in the calculation. If no rows are selected,
the result is NULL. Aggregates are only allowed in select statements.

Example:

REGR_SYY(Y, X)

REGR_SXY

REGR_SXY(dependentExpression, independentExpression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The the sum of products independent expression times dependent
expression. Rows in which either argument is NULL are ignored in the
calculation. If no rows are selected, the result is NULL. Aggregates are
only allowed in select statements.

Example:

REGR_SXY(Y, X)

Ordered Aggregate Functions

LISTAGG

LISTAGG ([DISTINCT|ALL] string [, separatorString]
[ON OVERFLOW { ERROR
| TRUNCATE [filterString] { WITH | WITHOUT } COUNT }])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Concatenates strings with a separator. The default separator is a ','
(without space). This method returns a string. NULL values are ignored in
the calculation, COALESCE can be used to replace them. If no rows are
selected, the result is NULL.

If ON OVERFLOW TRUNCATE is specified, values that don't fit into returned
string are truncated and replaced with filter string placeholder ('...' by
default) and count of truncated elements in parentheses. If WITHOUT
COUNT is specified, count of truncated elements is not appended.

Aggregates are only allowed in select statements.

Example:

296 of 436

LISTAGG(NAME, ', ') WITHIN GROUP (ORDER BY ID)
LISTAGG(COALESCE(NAME, 'null'), ', ') WITHIN GROUP (ORDER BY ID)
LISTAGG(ID, ', ') WITHIN GROUP (ORDER BY ID) OVER (ORDER BY ID)
LISTAGG(ID, ';' ON OVERFLOW TRUNCATE 'etc' WITHOUT COUNT) WITHIN
GROUP (ORDER BY ID)

ARRAY_AGG

ARRAY_AGG ([DISTINCT|ALL] value
[ORDER BY sortSpecificationList])
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Aggregate the value into an array. This method returns an array. NULL
values are included in the array, FILTER clause can be used to exclude
them. If no rows are selected, the result is NULL. If ORDER BY is not
specified order of values is not determined. When this aggregate is used
with OVER clause that contains ORDER BY subclause it does not enforce
exact order of values. This aggregate needs additional own ORDER BY
clause to make it deterministic. Aggregates are only allowed in select
statements.

Example:

ARRAY_AGG(NAME ORDER BY ID)
ARRAY_AGG(NAME ORDER BY ID) FILTER (WHERE NAME IS NOT NULL)
ARRAY_AGG(ID ORDER BY ID) OVER (ORDER BY ID)

Hypothetical Set Functions

RANK aggregate

RANK(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the rank of the hypothetical row in specified collection of rows.
The rank of a row is the number of rows that precede this row plus 1. If
two or more rows have the same values in ORDER BY columns, these rows
get the same rank from the first row with the same values. It means that
gaps in ranks are possible.

See RANK for a window function with the same name.

297 of 436

Example:

SELECT RANK(5) WITHIN GROUP (ORDER BY V) FROM TEST;

DENSE_RANK aggregate

DENSE_RANK(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the dense rank of the hypothetical row in specified collection of
rows. The rank of a row is the number of groups of rows with the same
values in ORDER BY columns that precede group with this row plus 1. If
two or more rows have the same values in ORDER BY columns, these rows
get the same rank. Gaps in ranks are not possible.

See DENSE_RANK for a window function with the same name.

Example:

SELECT DENSE_RANK(5) WITHIN GROUP (ORDER BY V) FROM TEST;

PERCENT_RANK aggregate

PERCENT_RANK(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the relative rank of the hypothetical row in specified collection of
rows. The relative rank is calculated as (RANK - 1) / (NR - 1), where RANK
is a rank of the row and NR is a total number of rows in the collection
including hypothetical row.

See PERCENT_RANK for a window function with the same name.

Example:

SELECT PERCENT_RANK(5) WITHIN GROUP (ORDER BY V) FROM TEST;

CUME_DIST aggregate

CUME_DIST(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

298 of 436

Returns the relative rank of the hypothetical row in specified collection of
rows. The relative rank is calculated as NP / NR where NP is a number of
rows that precede the current row or have the same values in ORDER BY
columns and NR is a total number of rows in the collection including
hypothetical row.

See CUME_DIST for a window function with the same name.

Example:

SELECT CUME_DIST(5) WITHIN GROUP (ORDER BY V) FROM TEST;

Inverse Distribution Functions

PERCENTILE_CONT

PERCENTILE_CONT(numeric) WITHIN GROUP (ORDER BY
sortSpecification)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Return percentile of values from the group with interpolation. Interpolation
is only supported for numeric, date-time, and interval data types.
Argument must be between 0 and 1 inclusive. Argument must be the
same for all rows in the same group. If argument is NULL, the result is
NULL. NULL values are ignored in the calculation. If no rows are selected,
the result is NULL. Aggregates are only allowed in select statements.

Example:

PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY V)

PERCENTILE_DISC

PERCENTILE_DISC(numeric) WITHIN GROUP (ORDER BY sortSpecification)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Return percentile of values from the group. Interpolation is not performed.
Argument must be between 0 and 1 inclusive. Argument must be the
same for all rows in the same group. If argument is NULL, the result is
NULL. NULL values are ignored in the calculation. If no rows are selected,
the result is NULL. Aggregates are only allowed in select statements.

Example:

PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY V)

299 of 436

MEDIAN

MEDIAN([DISTINCT|ALL] value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The value separating the higher half of a values from the lower half.
Returns the middle value or an interpolated value between two middle
values if number of values is even. Interpolation is only supported for
numeric, date-time, and interval data types. NULL values are ignored in
the calculation. If no rows are selected, the result is NULL. Aggregates are
only allowed in select statements.

Example:

MEDIAN(X)

MODE

{ MODE() WITHIN GROUP (ORDER BY sortSpecification) }
| { MODE(value [ORDER BY sortSpecification]) }
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the value that occurs with the greatest frequency. If there are
multiple values with the same frequency only one value will be returned.
In this situation value will be chosen based on optional ORDER BY clause
that should specify exactly the same expression as argument of this
function. Use ascending order to get smallest value or descending order to
get largest value from multiple values with the same frequency. If this
clause is not specified the exact chosen value is not determined in this
situation. NULL values are ignored in the calculation. If no rows are
selected, the result is NULL. Aggregates are only allowed in select
statements.

Example:

MODE() WITHIN GROUP (ORDER BY X)

JSON Aggregate Functions

JSON_OBJECTAGG

JSON_OBJECTAGG(
{[KEY] string VALUE value} | {string : value}
[{ NULL | ABSENT } ON NULL]

300 of 436

[{ WITH | WITHOUT } UNIQUE KEYS]
)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Aggregates the keys with values into a JSON object. If ABSENT ON NULL is
specified properties with NULL value are not included in the object. If
WITH UNIQUE KEYS is specified the constructed object is checked for
uniqueness of keys, nested objects, if any, are checked too. If no values
are selected, the result is SQL NULL value.

Example:

JSON_OBJECTAGG(NAME: VAL);
JSON_OBJECTAGG(KEY NAME VALUE VAL);

JSON_ARRAYAGG

JSON_ARRAYAGG([DISTINCT|ALL] expression
[ORDER BY sortSpecificationList]
[{ NULL | ABSENT } ON NULL])
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Aggregates the values into a JSON array. If NULL ON NULL is specified
NULL values are included in the array. If no values are selected, the result
is SQL NULL value.

Example:

JSON_ARRAYAGG(NUMBER)

301 of 436

Window Functions

Index

Row Number Function

ROW_NUMBER

Rank Functions

RANK
DENSE_RANK
PERCENT_RANK
CUME_DIST

Lead or Lag Functions

LEAD
LAG

Nth Value Functions

FIRST_VALUE
LAST_VALUE
NTH_VALUE

Other Window Functions

NTILE
RATIO_TO_REPORT

Details
Non-standard syntax is marked in green. Compatibility-only non-standard
syntax is marked in red, don't use it unless you need it for compatibility
with other databases or old versions of H2.

Row Number Function

ROW_NUMBER

ROW_NUMBER() OVER windowNameOrSpecification

302 of 436

Returns the number of the current row starting with 1. Window frame
clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT ROW_NUMBER() OVER (), * FROM TEST;
SELECT ROW_NUMBER() OVER (ORDER BY ID), * FROM TEST;
SELECT ROW_NUMBER() OVER (PARTITION BY CATEGORY ORDER BY ID), *
FROM TEST;

Rank Functions

RANK

RANK() OVER windowNameOrSpecification

Returns the rank of the current row. The rank of a row is the number of
rows that precede this row plus 1. If two or more rows have the same
values in ORDER BY columns, these rows get the same rank from the first
row with the same values. It means that gaps in ranks are possible. This
function requires window order clause. Window frame clause is not
allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

See RANK aggregate for a hypothetical set function with the same name.

Example:

SELECT RANK() OVER (ORDER BY ID), * FROM TEST;
SELECT RANK() OVER (PARTITION BY CATEGORY ORDER BY ID), * FROM
TEST;

DENSE_RANK

DENSE_RANK() OVER windowNameOrSpecification

Returns the dense rank of the current row. The rank of a row is the
number of groups of rows with the same values in ORDER BY columns that
precede group with this row plus 1. If two or more rows have the same
values in ORDER BY columns, these rows get the same rank. Gaps in ranks

303 of 436

are not possible. This function requires window order clause. Window
frame clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

See DENSE_RANK aggregate for a hypothetical set function with the same
name.

Example:

SELECT DENSE_RANK() OVER (ORDER BY ID), * FROM TEST;
SELECT DENSE_RANK() OVER (PARTITION BY CATEGORY ORDER BY ID), *
FROM TEST;

PERCENT_RANK

PERCENT_RANK() OVER windowNameOrSpecification

Returns the relative rank of the current row. The relative rank is
calculated as (RANK - 1) / (NR - 1), where RANK is a rank of the row and
NR is a number of rows in window partition with this row. Note that result
is always 0 if window order clause is not specified. Window frame clause is
not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

See PERCENT_RANK aggregate for a hypothetical set function with the
same name.

Example:

SELECT PERCENT_RANK() OVER (ORDER BY ID), * FROM TEST;
SELECT PERCENT_RANK() OVER (PARTITION BY CATEGORY ORDER BY ID),
* FROM TEST;

CUME_DIST

CUME_DIST() OVER windowNameOrSpecification

Returns the relative rank of the current row. The relative rank is
calculated as NP / NR where NP is a number of rows that precede the
current row or have the same values in ORDER BY columns and NR is a
number of rows in window partition with this row. Note that result is
always 1 if window order clause is not specified. Window frame clause is
not allowed for this function.

304 of 436

Window functions in H2 may require a lot of memory for large queries.

See CUME_DIST aggregate for a hypothetical set function with the same
name.

Example:

SELECT CUME_DIST() OVER (ORDER BY ID), * FROM TEST;
SELECT CUME_DIST() OVER (PARTITION BY CATEGORY ORDER BY ID), *
FROM TEST;

Lead or Lag Functions

LEAD

LEAD(value [, offsetInt [, defaultValue]]) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the value in a next row with specified offset relative to the current
row. Offset must be non-negative. If IGNORE NULLS is specified rows with
null values in selected expression are skipped. If number of considered
rows is less than specified relative number this function returns NULL or
the specified default value, if any. If offset is 0 the value from the current
row is returned unconditionally. This function requires window order
clause. Window frame clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT LEAD(X) OVER (ORDER BY ID), * FROM TEST;
SELECT LEAD(X, 2, 0) IGNORE NULLS OVER (
 PARTITION BY CATEGORY ORDER BY ID
), * FROM TEST;

LAG

LAG(value [, offsetInt [, defaultValue]]) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the value in a previous row with specified offset relative to the
current row. Offset must be non-negative. If IGNORE NULLS is specified
rows with null values in selected expression are skipped. If number of
considered rows is less than specified relative number this function

305 of 436

returns NULL or the specified default value, if any. If offset is 0 the value
from the current row is returned unconditionally. This function requires
window order clause. Window frame clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT LAG(X) OVER (ORDER BY ID), * FROM TEST;
SELECT LAG(X, 2, 0) IGNORE NULLS OVER (
 PARTITION BY CATEGORY ORDER BY ID
), * FROM TEST;

Nth Value Functions

FIRST_VALUE

FIRST_VALUE(value) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the first value in a window. If IGNORE NULLS is specified null
values are skipped and the function returns first non-null value, if any.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT FIRST_VALUE(X) OVER (ORDER BY ID), * FROM TEST;
SELECT FIRST_VALUE(X) IGNORE NULLS OVER (PARTITION BY CATEGORY
ORDER BY ID), * FROM TEST;

LAST_VALUE

LAST_VALUE(value) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the last value in a window. If IGNORE NULLS is specified null
values are skipped and the function returns last non-null value before
them, if any; if there is no non-null value it returns NULL. Note that the
last value is actually a value in the current group of rows if window order
clause is specified and window frame clause is not specified.

Window functions in H2 may require a lot of memory for large queries.

Example:

306 of 436

SELECT LAST_VALUE(X) OVER (ORDER BY ID), * FROM TEST;
SELECT LAST_VALUE(X) IGNORE NULLS OVER (
 PARTITION BY CATEGORY ORDER BY ID
 RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
), * FROM TEST;

NTH_VALUE

NTH_VALUE(value, nInt) [FROM {FIRST|LAST}] [{RESPECT|IGNORE}
NULLS]
OVER windowNameOrSpecification

Returns the value in a row with a specified relative number in a window.
Relative row number must be positive. If FROM LAST is specified rows a
counted backwards from the last row. If IGNORE NULLS is specified rows
with null values in selected expression are skipped. If number of
considered rows is less than specified relative number this function
returns NULL. Note that the last row is actually a last row in the current
group of rows if window order clause is specified and window frame clause
is not specified.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT NTH_VALUE(X) OVER (ORDER BY ID), * FROM TEST;
SELECT NTH_VALUE(X) IGNORE NULLS OVER (
 PARTITION BY CATEGORY ORDER BY ID
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING
), * FROM TEST;

Other Window Functions

NTILE

NTILE(long) OVER windowNameOrSpecification

Distributes the rows into a specified number of groups. Number of groups
should be a positive long value. NTILE returns the 1-based number of the
group to which the current row belongs. First groups will have more rows
if number of rows is not divisible by number of groups. For example, if 5

307 of 436

rows are distributed into 2 groups this function returns 1 for the first 3 row
and 2 for the last 2 rows. This function requires window order clause.
Window frame clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT NTILE(10) OVER (ORDER BY ID), * FROM TEST;
SELECT NTILE(5) OVER (PARTITION BY CATEGORY ORDER BY ID), * FROM
TEST;

RATIO_TO_REPORT

RATIO_TO_REPORT(value)
OVER windowNameOrSpecification

Returns the ratio of a value to the sum of all values. If argument is NULL
or sum of all values is 0, then the value of function is NULL. Window
ordering and window frame clauses are not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT X, RATIO_TO_REPORT(X) OVER (PARTITION BY CATEGORY),
CATEGORY FROM TEST;

308 of 436

Data Types

Index
CHARACTER
CHARACTER VARYING
CHARACTER LARGE OBJECT
VARCHAR_IGNORECASE
BINARY
BINARY VARYING
BINARY LARGE OBJECT
BOOLEAN
TINYINT
SMALLINT
INTEGER
BIGINT
NUMERIC
REAL
DOUBLE PRECISION
DECFLOAT
DATE
TIME
TIME WITH TIME ZONE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
INTERVAL
JAVA_OBJECT
ENUM
GEOMETRY
JSON
UUID
ARRAY
ROW

309 of 436

Details
Non-standard syntax is marked in green. Compatibility-only non-standard
syntax is marked in red, don't use it unless you need it for compatibility
with other databases or old versions of H2.

CHARACTER

{ CHARACTER | CHAR | NATIONAL { CHARACTER | CHAR } | NCHAR }
[(lengthInt [CHARACTERS|OCTETS])]

A Unicode String of fixed length.

Length, if any, should be specified in characters, CHARACTERS and
OCTETS units have no effect in H2. The allowed length is from 1 to
1,000,000,000 characters. If length is not specified, 1 character is used by
default.

The whole text is kept in memory when using this data type. For variable-
length strings use CHARACTER VARYING data type instead. For large text
data CHARACTER LARGE OBJECT should be used; see there for details.

Too short strings are right-padded with space characters. Too long strings
are truncated by CAST specification and rejected by column assignment.

Two CHARACTER strings of different length are considered as equal if all
additional characters in the longer string are space characters.

See also string literal grammar. Mapped to java.lang.String.

Example:

CHARACTER
CHAR(10)

CHARACTER VARYING

{ { CHARACTER | CHAR } VARYING
| VARCHAR
| { NATIONAL { CHARACTER | CHAR } | NCHAR } VARYING
| { VARCHAR_CASESENSITIVE } }
[(lengthInt [CHARACTERS|OCTETS])]

A Unicode String. Use two single quotes ('') to create a quote.

310 of 436

The allowed length is from 1 to 1,000,000,000 characters. The length is a
size constraint; only the actual data is persisted. Length, if any, should be
specified in characters, CHARACTERS and OCTETS units have no effect in
H2.

The whole text is loaded into memory when using this data type. For large
text data CHARACTER LARGE OBJECT should be used; see there for
details.

See also string literal grammar. Mapped to java.lang.String.

Example:

CHARACTER VARYING(100)
VARCHAR(255)

CHARACTER LARGE OBJECT

{ { CHARACTER | CHAR } LARGE OBJECT | CLOB
| { NATIONAL CHARACTER | NCHAR } LARGE OBJECT | NCLOB }
[(lengthLong [K|M|G|T|P] [CHARACTERS|OCTETS])]

CHARACTER LARGE OBJECT is intended for very large Unicode character
string values. Unlike when using CHARACTER VARYING, large CHARACTER
LARGE OBJECT values are not kept fully in-memory; instead, they are
streamed. CHARACTER LARGE OBJECT should be used for documents and
texts with arbitrary size such as XML or HTML documents, text files, or
memo fields of unlimited size. Use
PreparedStatement.setCharacterStream to store values. See also Large
Objects section.

CHARACTER VARYING should be used for text with relatively short average
size (for example shorter than 200 characters). Short CHARACTER LARGE
OBJECT values are stored inline, but there is an overhead compared to
CHARACTER VARYING.

Length, if any, should be specified in characters, CHARACTERS and
OCTETS units have no effect in H2.

Mapped to java.sql.Clob (java.io.Reader is also supported).

Example:

CHARACTER LARGE OBJECT
CLOB(10K)

311 of 436

VARCHAR_IGNORECASE

VARCHAR_IGNORECASE
[(lengthInt [CHARACTERS|OCTETS])]

Same as VARCHAR, but not case sensitive when comparing. Stored in
mixed case.

The allowed length is from 1 to 1,000,000,000 characters. The length is a
size constraint; only the actual data is persisted. Length, if any, should be
specified in characters, CHARACTERS and OCTETS units have no effect in
H2.

The whole text is loaded into memory when using this data type. For large
text data CLOB should be used; see there for details.

See also string literal grammar. Mapped to java.lang.String.

Example:

VARCHAR_IGNORECASE

BINARY

BINARY [(lengthInt)]

Represents a binary string (byte array) of fixed predefined length.

The allowed length is from 1 to 1,000,000,000 bytes. If length is not
specified, 1 byte is used by default.

The whole binary string is kept in memory when using this data type. For
variable-length binary strings use BINARY VARYING data type instead. For
large binary data BINARY LARGE OBJECT should be used; see there for
details.

Too short binary string are right-padded with zero bytes. Too long binary
strings are truncated by CAST specification and rejected by column
assignment.

Binary strings of different length are considered as not equal to each
other.

See also bytes literal grammar. Mapped to byte[].

Example:

312 of 436

BINARY
BINARY(1000)

BINARY VARYING

{ BINARY VARYING | VARBINARY }
[(lengthInt)]

Represents a byte array.

The allowed length is from 1 to 1,000,000,000 bytes. The length is a size
constraint; only the actual data is persisted.

The whole binary string is kept in memory when using this data type. For
large binary data BINARY LARGE OBJECT should be used; see there for
details.

See also bytes literal grammar. Mapped to byte[].

Example:

BINARY VARYING(100)
VARBINARY(1000)

BINARY LARGE OBJECT

{ BINARY LARGE OBJECT | BLOB }
[(lengthLong [K|M|G|T|P])]

BINARY LARGE OBJECT is intended for very large binary values such as
files or images. Unlike when using BINARY VARYING, large objects are not
kept fully in-memory; instead, they are streamed. Use
PreparedStatement.setBinaryStream to store values. See also CHARACTER
LARGE OBJECT and Large Objects section.

Mapped to java.sql.Blob (java.io.InputStream is also supported).

Example:

BINARY LARGE OBJECT
BLOB(10K)

BOOLEAN

BOOLEAN

313 of 436

Possible values: TRUE, FALSE, and UNKNOWN (NULL).

See also boolean literal grammar. Mapped to java.lang.Boolean.

Example:

BOOLEAN

TINYINT

TINYINT

Possible values are: -128 to 127.

See also integer literal grammar.

In JDBC this data type is mapped to java.lang.Integer. java.lang.Byte is
also supported.

In org.h2.api.Aggregate, org.h2.api.AggregateFunction, and
org.h2.api.Trigger this data type is mapped to java.lang.Byte.

Example:

TINYINT

SMALLINT

SMALLINT

Possible values: -32768 to 32767.

See also integer literal grammar.

In JDBC this data type is mapped to java.lang.Integer. java.lang.Short is
also supported.

In org.h2.api.Aggregate, org.h2.api.AggregateFunction, and
org.h2.api.Trigger this data type is mapped to java.lang.Short.

Example:

SMALLINT

INTEGER

INTEGER | INT

314 of 436

Possible values: -2147483648 to 2147483647.

See also integer literal grammar. Mapped to java.lang.Integer.

Example:

INTEGER
INT

BIGINT

BIGINT

Possible values: -9223372036854775808 to 9223372036854775807.

See also long literal grammar. Mapped to java.lang.Long.

Example:

BIGINT

NUMERIC

{ NUMERIC | DECIMAL | DEC } [(precisionInt [, scaleInt])]

Data type with fixed decimal precision and scale. This data type is
recommended for storing currency values.

If precision is specified, it must be from 1 to 100000. If scale is specified, it
must be from 0 to 100000, 0 is default.

See also numeric literal grammar. Mapped to java.math.BigDecimal.

Example:

NUMERIC(20, 2)

REAL

REAL | FLOAT (precisionInt)

A single precision floating point number. Should not be used to represent
currency values, because of rounding problems. Precision value for FLOAT
type name should be from 1 to 24.

See also numeric literal grammar. Mapped to java.lang.Float.

Example:
315 of 436

REAL

DOUBLE PRECISION

DOUBLE PRECISION | FLOAT [(precisionInt)]

A double precision floating point number. Should not be used to represent
currency values, because of rounding problems. If precision value is
specified for FLOAT type name, it should be from 25 to 53.

See also numeric literal grammar. Mapped to java.lang.Double.

Example:

DOUBLE PRECISION

DECFLOAT

DECFLOAT [(precisionInt)]

Decimal floating point number. This data type is not recommended to
represent currency values, because of variable scale.

If precision is specified, it must be from 1 to 100000.

See also numeric literal grammar. Mapped to java.math.BigDecimal. There
are three special values: 'Infinity', '-Infinity', and 'NaN'. These special
values can't be read or set as BigDecimal values, but they can be read or
set using java.lang.String, float, or double.

Example:

DECFLOAT
DECFLOAT(20)

DATE

DATE

The date data type. The proleptic Gregorian calendar is used.

See also date literal grammar.

In JDBC this data type is mapped to java.sql.Date, with the time set to
00:00:00 (or to the next possible time if midnight doesn't exist for the

316 of 436

given date and time zone due to a daylight saving change).
java.time.LocalDate is also supported and recommended.

In org.h2.api.Aggregate, org.h2.api.AggregateFunction, and
org.h2.api.Trigger this data type is mapped to java.time.LocalDate.

If your time zone had LMT (local mean time) in the past and you use such
old dates (depends on the time zone, usually 100 or more years ago),
don't use java.sql.Date to read and write them.

If you deal with very old dates (before 1582-10-15) note that java.sql.Date
uses a mixed Julian/Gregorian calendar, java.util.GregorianCalendar can
be configured to proleptic Gregorian with setGregorianChange(new
java.util.Date(Long.MIN_VALUE)) and used to read or write fields of dates.

Example:

DATE

TIME

TIME [(precisionInt)] [WITHOUT TIME ZONE]

The time data type. The format is hh:mm:ss[.nnnnnnnnn]. If fractional
seconds precision is specified it should be from 0 to 9, 0 is default.

See also time literal grammar.

In JDBC this data type is mapped to java.sql.Time. java.time.LocalTime is
also supported and recommended.

In org.h2.api.Aggregate, org.h2.api.AggregateFunction, and
org.h2.api.Trigger this data type is mapped to java.time.LocalTime.

Use java.time.LocalTime or String instead of java.sql.Time when non-zero
precision is needed. Cast from higher fractional seconds precision to lower
fractional seconds precision performs round half up; if result of rounding is
higher than maximum supported value 23:59:59.999999999 the value is
rounded down instead. The CAST operation to TIMESTAMP and TIMESTAMP
WITH TIME ZONE data types uses the CURRENT_DATE for date fields.

Example:

TIME
TIME(9)

317 of 436

TIME WITH TIME ZONE

TIME [(precisionInt)] WITH TIME ZONE

The time with time zone data type. If fractional seconds precision is
specified it should be from 0 to 9, 0 is default.

See also time with time zone literal grammar. Mapped to
java.time.OffsetTime. Cast from higher fractional seconds precision to
lower fractional seconds precision performs round half up; if result of
rounding is higher than maximum supported value 23:59:59.999999999
the value is rounded down instead. The CAST operation to TIMESTAMP and
TIMESTAMP WITH TIME ZONE data types uses the CURRENT_DATE for date
fields.

Example:

TIME WITH TIME ZONE
TIME(9) WITH TIME ZONE

TIMESTAMP

TIMESTAMP [(precisionInt)] [WITHOUT TIME ZONE]

The timestamp data type. The proleptic Gregorian calendar is used. If
fractional seconds precision is specified it should be from 0 to 9, 6 is
default.

This data type holds the local date and time without time zone
information. It cannot distinguish timestamps near transitions from DST to
normal time. For absolute timestamps use the TIMESTAMP WITH TIME
ZONE data type instead.

See also timestamp literal grammar.

In JDBC this data type is mapped to java.sql.Timestamp (java.util.Date
may be used too). java.time.LocalDateTime is also supported and
recommended.

In org.h2.api.Aggregate, org.h2.api.AggregateFunction, and
org.h2.api.Trigger this data type is mapped to java.time.LocalDateTime.

318 of 436

If your time zone had LMT (local mean time) in the past and you use such
old dates (depends on the time zone, usually 100 or more years ago),
don't use java.sql.Timestamp and java.util.Date to read and write them.

If you deal with very old dates (before 1582-10-15) note that
java.sql.Timestamp and java.util.Date use a mixed Julian/Gregorian
calendar, java.util.GregorianCalendar can be configured to proleptic
Gregorian with setGregorianChange(new java.util.Date(Long.MIN_VALUE))
and used to read or write fields of timestamps.

Cast from higher fractional seconds precision to lower fractional seconds
precision performs round half up.

Example:

TIMESTAMP
TIMESTAMP(9)

TIMESTAMP WITH TIME ZONE

TIMESTAMP [(precisionInt)] WITH TIME ZONE

The timestamp with time zone data type. The proleptic Gregorian calendar
is used. If fractional seconds precision is specified it should be from 0 to 9,
6 is default.

See also timestamp with time zone literal grammar. Mapped to
java.time.OffsetDateTime. java.time.ZonedDateTime and java.time.Instant
are also supported.

Values of this data type are compared by UTC values. It means that 2010-
01-01 10:00:00+01 is greater than 2010-01-01 11:00:00+03.

Conversion to TIMESTAMP uses time zone offset to get UTC time and
converts it to local time using the system time zone. Conversion from
TIMESTAMP does the same operations in reverse and sets time zone offset
to offset of the system time zone. Cast from higher fractional seconds
precision to lower fractional seconds precision performs round half up.

Example:

TIMESTAMP WITH TIME ZONE
TIMESTAMP(9) WITH TIME ZONE

319 of 436

INTERVAL

intervalYearType | intervalMonthType | intervalDayType
| intervalHourType| intervalMinuteType | intervalSecondType
| intervalYearToMonthType | intervalDayToHourType
| intervalDayToMinuteType | intervalDayToSecondType
| intervalHourToMinuteType | intervalHourToSecondType
| intervalMinuteToSecondType

Interval data type. There are two classes of intervals. Year-month intervals
can store years and months. Day-time intervals can store days, hours,
minutes, and seconds. Year-month intervals are comparable only with
another year-month intervals. Day-time intervals are comparable only
with another day-time intervals.

Mapped to org.h2.api.Interval.

Example:

INTERVAL DAY TO SECOND

JAVA_OBJECT

{ JAVA_OBJECT | OBJECT | OTHER } [(lengthInt)]

This type allows storing serialized Java objects. Internally, a byte array
with serialized form is used. The allowed length is from 1 (useful only with
custom serializer) to 1,000,000,000 bytes. The length is a size constraint;
only the actual data is persisted.

Serialization and deserialization is done on the client side only with two
exclusions described below. Deserialization is only done when getObject is
called. Java operations cannot be executed inside the database engine for
security reasons. Use PreparedStatement.setObject with
Types.JAVA_OBJECT or H2Type.JAVA_OBJECT as a third argument to store
values.

If Java method alias has Object parameter(s), values are deserialized
during invocation of this method on the server side.

If a linked table has a column with Types.JAVA_OBJECT JDBC data type and
its database is not an another H2, Java objects need to be serialized and
deserialized during interaction between H2 and database that owns the
table on the server side of H2.

320 of 436

This data type needs special attention in secure environments.

Mapped to java.lang.Object (or any subclass).

Example:

JAVA_OBJECT
JAVA_OBJECT(10000)

ENUM

ENUM (string [, ...])

A type with enumerated values. Mapped to java.lang.String.

Duplicate and empty values are not permitted. The maximum number of
values is 65536. The maximum allowed length of complete data type
definition with all values is 1,000,000,000 characters.

Example:

ENUM('clubs', 'diamonds', 'hearts', 'spades')

GEOMETRY

GEOMETRY
[({ GEOMETRY |
{ POINT
| LINESTRING
| POLYGON
| MULTIPOINT
| MULTILINESTRING
| MULTIPOLYGON
| GEOMETRYCOLLECTION } [Z|M|ZM]}
[, sridInt])]

A spatial geometry type. If additional constraints are not specified this
type accepts all supported types of geometries. A constraint with required
geometry type and dimension system can be set by specifying name of
the type and dimension system. A whitespace between them is optional.
2D dimension system does not have a name and assumed if only a
geometry type name is specified. POINT means 2D point, POINT Z or
POINTZ means 3D point. GEOMETRY constraint means no restrictions on

321 of 436

type or dimension system of geometry. A constraint with required spatial
reference system identifier (SRID) can be set by specifying this identifier.

Mapped to org.locationtech.jts.geom.Geometry if JTS library is in classpath
and to java.lang.String otherwise. May be represented in textual format
using the WKT (well-known text) or EWKT (extended well-known text)
format. Values are stored internally in EWKB (extended well-known binary)
format, the maximum allowed length is 1,000,000,000 bytes. Only a
subset of EWKB and EWKT features is supported. Supported objects are
POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING,
MULTIPOLYGON, and GEOMETRYCOLLECTION. Supported dimension
systems are 2D (XY), Z (XYZ), M (XYM), and ZM (XYZM). SRID (spatial
reference system identifier) is supported.

Use a quoted string containing a WKT/EWKT formatted string or
PreparedStatement.setObject() to store values, and
ResultSet.getObject(..) or ResultSet.getString(..) to retrieve the values.

Example:

GEOMETRY
GEOMETRY(POINT)
GEOMETRY(POINT Z)
GEOMETRY(POINT Z, 4326)
GEOMETRY(GEOMETRY, 4326)

JSON

JSON [(lengthInt)]

A RFC 8259-compliant JSON text.

See also json literal grammar. Mapped to byte[]. The allowed length is
from 1 to 1,000,000,000 bytes. The length is a size constraint; only the
actual data is persisted.

To set a JSON value with java.lang.String in a PreparedStatement use a
FORMAT JSON data format (INSERT INTO TEST(ID, DATA) VALUES (?, ?
FORMAT JSON)) or use setObject(parameter, jsonText, H2Type.JSON)
instead of setString().

Without the data format VARCHAR values are converted to JSON string
values.

322 of 436

SQL/JSON null value JSON 'null' is distinct from the SQL null value NULL.

Order of object members is preserved as is. Duplicate object member
names are allowed.

Example:

JSON

UUID

UUID

Universally unique identifier. This is a 128 bit value. To store values, use
PreparedStatement.setBytes, setString, or setObject(uuid) (where uuid is
a java.util.UUID). ResultSet.getObject will return a java.util.UUID.

Please note that using an index on randomly generated data will result on
poor performance once there are millions of rows in a table. The reason is
that the cache behavior is very bad with randomly distributed data. This is
a problem for any database system.

For details, see the documentation of java.util.UUID.

Example:

UUID

ARRAY

baseDataType ARRAY ['[' maximumCardinalityInt ']']

A data type for array of values. Base data type specifies the data type of
elements. Array may have NULL elements. Maximum cardinality, if any,
specifies maximum allowed number of elements in the array. The allowed
cardinality is from 0 to 65536 elements.

See also array literal grammar. Mapped to java.lang.Object[] (arrays of
any non-primitive type are also supported).

Use PreparedStatement.setArray(..) or PreparedStatement.setObject(..,
new Object[] {..}) to store values, and ResultSet.getObject(..) or
ResultSet.getArray(..) to retrieve the values.

Example:

323 of 436

BOOLEAN ARRAY
VARCHAR(100) ARRAY
INTEGER ARRAY[10]

ROW

ROW (fieldName dataType [,...])

A row value data type. This data type should not be normally used as data
type of a column.

See also row value expression grammar. Mapped to java.sql.ResultSet.

Example:

ROW(A INT, B VARCHAR(10))

Interval Data Types

INTERVAL YEAR

INTERVAL YEAR [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is
default.

See also year interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Period is also supported.

Example:

INTERVAL YEAR

INTERVAL MONTH

INTERVAL MONTH [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is
default.

See also month interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Period is also supported.

Example:

INTERVAL MONTH

324 of 436

INTERVAL DAY

INTERVAL DAY [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is
default.

See also day interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported.

Example:

INTERVAL DAY

INTERVAL HOUR

INTERVAL HOUR [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is
default.

See also hour interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported.

Example:

INTERVAL HOUR

INTERVAL MINUTE

INTERVAL MINUTE [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is
default.

See also minute interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported.

Example:

INTERVAL MINUTE

INTERVAL SECOND

INTERVAL SECOND [(precisionInt [, fractionalPrecisionInt])]

325 of 436

Interval data type. If precision is specified it should be from 1 to 18, 2 is
default. If fractional seconds precision is specified it should be from 0 to 9,
6 is default.

See also second interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported.

Example:

INTERVAL SECOND

INTERVAL YEAR TO MONTH

INTERVAL YEAR [(precisionInt)] TO MONTH

Interval data type. If leading field precision is specified it should be from 1
to 18, 2 is default.

See also year to month interval literal grammar. Mapped to
org.h2.api.Interval. java.time.Period is also supported.

Example:

INTERVAL YEAR TO MONTH

INTERVAL DAY TO HOUR

INTERVAL DAY [(precisionInt)] TO HOUR

Interval data type. If leading field precision is specified it should be from 1
to 18, 2 is default.

See also day to hour interval literal grammar. Mapped to
org.h2.api.Interval. java.time.Duration is also supported.

Example:

INTERVAL DAY TO HOUR

INTERVAL DAY TO MINUTE

INTERVAL DAY [(precisionInt)] TO MINUTE

Interval data type. If leading field precision is specified it should be from 1
to 18, 2 is default.

326 of 436

See also day to minute interval literal grammar. Mapped to
org.h2.api.Interval. java.time.Duration is also supported.

Example:

INTERVAL DAY TO MINUTE

INTERVAL DAY TO SECOND

INTERVAL DAY [(precisionInt)] TO SECOND [(fractionalPrecisionInt)]

Interval data type. If leading field precision is specified it should be from 1
to 18, 2 is default. If fractional seconds precision is specified it should be
from 0 to 9, 6 is default.

See also day to second interval literal grammar. Mapped to
org.h2.api.Interval. java.time.Duration is also supported.

Example:

INTERVAL DAY TO SECOND

INTERVAL HOUR TO MINUTE

INTERVAL HOUR [(precisionInt)] TO MINUTE

Interval data type. If leading field precision is specified it should be from 1
to 18, 2 is default.

See also hour to minute interval literal grammar. Mapped to
org.h2.api.Interval. java.time.Duration is also supported.

Example:

INTERVAL HOUR TO MINUTE

INTERVAL HOUR TO SECOND

INTERVAL HOUR [(precisionInt)] TO SECOND [(fractionalPrecisionInt)]

Interval data type. If leading field precision is specified it should be from 1
to 18, 2 is default. If fractional seconds precision is specified it should be
from 0 to 9, 6 is default.

See also hour to second interval literal grammar. Mapped to
org.h2.api.Interval. java.time.Duration is also supported.

327 of 436

Example:

INTERVAL HOUR TO SECOND

INTERVAL MINUTE TO SECOND

INTERVAL MINUTE [(precisionInt)] TO SECOND [(
fractionalPrecisionInt)]

Interval data type. If leading field precision is specified it should be from 1
to 18, 2 is default. If fractional seconds precision is specified it should be
from 0 to 9, 6 is default.

See also minute to second interval literal grammar. Mapped to
org.h2.api.Interval. java.time.Duration is also supported.

Example:

INTERVAL MINUTE TO SECOND

328 of 436

SQL Grammar

Index

Literals

Value
Approximate numeric
Array
Boolean
Bytes
Date
Date and time
Dollar Quoted String
Exact numeric
Hex Number
Octal Number
Binary Number
Int
GEOMETRY
JSON
Long
Null
Number
Numeric
String
UUID
Time
Time with time zone
Timestamp
Timestamp with time zone
Interval
INTERVAL YEAR
INTERVAL MONTH
INTERVAL DAY
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL SECOND

329 of 436

INTERVAL YEAR TO MONTH
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL MINUTE TO SECOND

Datetime fields

Datetime field
Year field
Month field
Day of month field
Hour field
Minute field
Second field
Timezone hour field
Timezone minute field
Timezone second field
Millennium field
Century field
Decade field
Quarter field
Millisecond field
Microsecond field
Nanosecond field
Day of year field
ISO day of week field
ISO week field
ISO week year field
Day of week field
Week field
Week year field
Epoch field

Other Grammar

Alias
And Condition

330 of 436

Array element reference
Field reference
Array value constructor by query
Case expression
Simple case
Searched case
Cast specification
Cipher
Column Definition
Column Constraint Definition
Comment
Bracketed comment
Compare
Condition
Condition Right Hand Side
Comparison Right Hand Side
Quantified Comparison Right Hand Side
Null Predicate Right Hand Side
Distinct Predicate Right Hand Side
Quantified Distinct Predicate Right Hand Side
Boolean Test Right Hand Side
Type Predicate Right Hand Side
JSON Predicate Right Hand Side
Between Predicate Right Hand Side
In Predicate Right Hand Side
Like Predicate Right Hand Side
Regexp Predicate Right Hand Side
Nulls Distinct
Table Constraint Definition
Constraint Name Definition
Csv Options
Data Change Delta Table
Data Type or Domain
Data Type
Predefined Type
Digit
Expression
Factor

331 of 436

Grouping element
Hex
Index Column
Insert values
Interval qualifier
Join specification
Merge when clause
Merge when matched clause
Merge when not matched clause
Name
Operand
Override clause
Query
Quoted Name
Referential Constraint
References Specification
Referential Action
Script Compression Encryption
Select order
Row value expression
Select Expression
Sequence value expression
Sequence option
Alter sequence option
Alter identity column option
Basic sequence option
Set clause list
Sort specification
Sort specification list
Summand
Table Expression
Update target
Within group specification
Wildcard expression
Window name or specification
Window specification
Window frame
Window frame preceding

332 of 436

Window frame bound
Term
Time zone
Column

Details
Non-standard syntax is marked in green. Compatibility-only non-standard
syntax is marked in red, don't use it unless you need it for compatibility
with other databases or old versions of H2.

Literals

Value

string | { dollarQuotedString } | numeric | dateAndTime | boolean | bytes
| interval | array | { geometry | json | uuid } | null

A literal value of any data type, or null.

Example:

10

Approximate numeric

[+ | -] { { number [. [number]] } | { . number } }
E [+ | -] expNumber

An approximate numeric value. Approximate numeric values have
DECFLOAT data type. To define a DOUBLE PRECISION value, use CAST(X
AS DOUBLE PRECISION). To define a REAL value, use CAST(X AS REAL).
There are some special REAL, DOUBLE PRECISION, and DECFLOAT values:
to represent positive infinity, use CAST('Infinity' AS dataType); for
negative infinity, use CAST('-Infinity' AS dataType); for NaN (not a
number), use CAST('NaN' AS dataType).

Example:

-1.4e-10
1.111_111E3
CAST(1e2 AS REAL)
CAST('NaN' AS DOUBLE PRECISION)

333 of 436

Array

ARRAY '[' [expression [,...]] ']'

An array of values.

Example:

ARRAY[1, 2]
ARRAY[1]
ARRAY[]

Boolean

TRUE | FALSE | UNKNOWN

A boolean value. UNKNOWN is a NULL value with the boolean data type.

Example:

TRUE

Bytes

X'hex' ['hex' [...]]

A binary string value. The hex value is not case sensitive and may contain
space characters as separators. If there are more than one group of
quoted hex values, groups must be separated with whitespace.

Example:

X''
X'01FF'
X'01 bc 2a'
X'01' '02'

Date

DATE '[-]yyyy-MM-dd'

A date literal.

Example:

DATE '2004-12-31'

334 of 436

Date and time

date | time | timeWithTimeZone | timestamp | timestampWithTimeZone

A literal value of any date-time data type.

Example:

TIMESTAMP '1999-01-31 10:00:00'

Dollar Quoted String

$$anything$$

A string starts and ends with two dollar signs. Two dollar signs are not
allowed within the text. A whitespace is required before the first set of
dollar signs. No escaping is required within the text.

Example:

$$John's car$$

Exact numeric

[+ | -] { { number [. number] } | { . number } }

An exact numeric value. Exact numeric values with dot have NUMERIC
data type, values without dot small enough to fit into INTEGER data type
have this type, larger values small enough to fit into BIGINT data type
have this type, others also have NUMERIC data type.

Example:

-1600.05
134_518.235_114

Hex Number

[+|-] {0x|0X} { [_] { digit | a-f | A-F } [...] } [...]

A number written in hexadecimal notation.

Example:

0xff
0x_ABCD_1234

335 of 436

Octal Number

[+|-] {0o|0O} { [_] { 0-7 } [...] } [...]

A number written in octal notation.

Example:

0o664
0o_123_777

Binary Number

[+|-] {0b|0B} { [_] { 0-1 } [...] } [...]

A number written in binary notation.

Example:

0b101
0b_01010101_10101010

Int

[+ | -] number

The maximum integer number is 2147483647, the minimum is -
2147483648.

Example:

10
65_536

GEOMETRY

GEOMETRY { bytes | string }

A binary string or character string with GEOMETRY object.

A binary string should contain Well-known Binary Representation (WKB)
from OGC 06-103r4. Dimension system marks may be specified either in
both OGC WKB or in PostGIS EWKB formats. Optional SRID from EWKB
may be specified. POINT EMPTY stored with NaN values as specified in
OGC 12-128r15 is supported.

336 of 436

A character string should contain Well-known Text Representation (WKT)
from OGC 06-103r4 with optional SRID from PostGIS EWKT extension.

Example:

GEOMETRY 'GEOMETRYCOLLECTION (POINT (1 2))'
GEOMETRY X'00000000013ff00000000000003ff0000000000000'

JSON

JSON { bytes | string }

A binary or character string with a RFC 8259-compliant JSON text and data
format. JSON text is parsed into internal representation. Order of object
members is preserved as is. Duplicate object member names are allowed.

Example:

JSON '{"id":10,"name":"What''s this?"}'
JSON '[1, ' '2]';
JSON X'7472' '7565'

Long

[+ | -] number

Long numbers are between -9223372036854775808 and
9223372036854775807.

Example:

100000
1_000_000_000

Null

NULL

NULL is a value without data type and means 'unknown value'.

Example:

NULL

Number

digit [[_] digit [...]] [...]

337 of 436

The maximum length of the number depends on the data type used.

Example:

100
10_000

Numeric

exactNumeric | approximateNumeric | int | long | hexNumber |
octalNumber | binaryNumber

The data type of a numeric literal is the one of numeric data types, such
as NUMERIC, DECFLOAT, BIGINT, or INTEGER depending on format and
value.

An explicit CAST can be used to change the data type.

Example:

-1600.05
CAST(0 AS DOUBLE PRECISION)
-1.4e-10
999_999_999.999_999

String

[N]'anything' [...]
| U&{'anything' [...]} [UESCAPE 'anything']

A character string literal starts and ends with a single quote. Two single
quotes can be used to create a single quote inside a string. Prefix N
means a national character string literal; H2 does not distinguish regular
and national character string literals in any way, this prefix has no effect
in H2.

String literals staring with U& are Unicode character string literals. All
character string literals in H2 may have Unicode characters, but Unicode
character string literals may contain Unicode escape sequences \0000 or \
+000000, where \ is an escape character, 0000 and 000000 are Unicode
character codes in hexadecimal notation. Optional UESCAPE clause may
be used to specify another escape character, with exception for single
quote, double quote, plus sign, and hexadecimal digits (0-9, a-f, and A-F).
By default the backslash is used. Two escape characters can be used to

338 of 436

include a single character inside a string. Two single quotes can be used
to create a single quote inside a string.

Example:

'John''s car'
'A' 'B' 'C'
U&'W\00f6rter ' '\\ \+01f600 /'
U&'|00a1' UESCAPE '|'

UUID

UUID '{ digit | a-f | A-F | - } [...]'

A UUID literal. Must contain 32 hexadecimal digits. Digits may be
separated with - signs.

Example:

UUID '12345678-1234-1234-1234-123456789ABC'

Time

TIME [WITHOUT TIME ZONE] 'hh:mm:ss[.nnnnnnnnn]'

A time literal. A value is between 0:00:00 and 23:59:59.999999999 and
has nanosecond resolution.

Example:

TIME '23:59:59'

Time with time zone

TIME WITH TIME ZONE 'hh:mm:ss[.nnnnnnnnn]{ { Z } | { - | + }
timeZoneOffsetString}'

A time with time zone literal. A value is between 0:00:00 and
23:59:59.999999999 and has nanosecond resolution.

Example:

TIME WITH TIME ZONE '23:59:59+01'
TIME WITH TIME ZONE '10:15:30.334-03:30'
TIME WITH TIME ZONE '0:00:00Z'

339 of 436

Timestamp

TIMESTAMP [WITHOUT TIME ZONE] '[-]yyyy-MM-dd
hh:mm:ss[.nnnnnnnnn]'

A timestamp literal.

Example:

TIMESTAMP '2005-12-31 23:59:59'

Timestamp with time zone

TIMESTAMP WITH TIME ZONE '[-]yyyy-MM-dd hh:mm:ss[.nnnnnnnnn]
[{ Z } | { - | + } timeZoneOffsetString | { timeZoneNameString }]'

A timestamp with time zone literal. If name of time zone is specified it will
be converted to time zone offset.

Example:

TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59Z'
TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59-10:00'
TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59.123+05'
TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59.123456789
Europe/London'

Interval

intervalYear | intervalMonth | intervalDay | intervalHour | intervalMinute
| intervalSecond | intervalYearToMonth | intervalDayToHour
| intervalDayToMinute | intervalDayToSecond | intervalHourToMinute
| intervalHourToSecond | intervalMinuteToSecond

An interval literal.

Example:

INTERVAL '1-2' YEAR TO MONTH

INTERVAL YEAR

INTERVAL [-|+] '[-|+]yearInt' YEAR [(precisionInt)]

An INTERVAL YEAR literal. If precision is specified it should be from 1 to
18.

340 of 436

Example:

INTERVAL '10' YEAR

INTERVAL MONTH

INTERVAL [-|+] '[-|+]monthInt' MONTH [(precisionInt)]

An INTERVAL MONTH literal. If precision is specified it should be from 1 to
18.

Example:

INTERVAL '10' MONTH

INTERVAL DAY

INTERVAL [-|+] '[-|+]dayInt' DAY [(precisionInt)]

An INTERVAL DAY literal. If precision is specified it should be from 1 to 18.

Example:

INTERVAL '10' DAY

INTERVAL HOUR

INTERVAL [-|+] '[-|+]hourInt' HOUR [(precisionInt)]

An INTERVAL HOUR literal. If precision is specified it should be from 1 to
18.

Example:

INTERVAL '10' HOUR

INTERVAL MINUTE

INTERVAL [-|+] '[-|+]minuteInt' MINUTE [(precisionInt)]

An INTERVAL MINUTE literal. If precision is specified it should be from 1 to
18.

Example:

INTERVAL '10' MINUTE

341 of 436

INTERVAL SECOND

INTERVAL [-|+] '[-|+]secondInt[.nnnnnnnnn]'
SECOND [(precisionInt [, fractionalPrecisionInt])]

An INTERVAL SECOND literal. If precision is specified it should be from 1 to
18. If fractional seconds precision is specified it should be from 0 to 9.

Example:

INTERVAL '10.123' SECOND

INTERVAL YEAR TO MONTH

INTERVAL [-|+] '[-|+]yearInt-monthInt' YEAR [(precisionInt)] TO MONTH

An INTERVAL YEAR TO MONTH literal. If leading field precision is specified
it should be from 1 to 18.

Example:

INTERVAL '1-6' YEAR TO MONTH

INTERVAL DAY TO HOUR

INTERVAL [-|+] '[-|+]dayInt hoursInt' DAY [(precisionInt)] TO HOUR

An INTERVAL DAY TO HOUR literal. If leading field precision is specified it
should be from 1 to 18.

Example:

INTERVAL '10 11' DAY TO HOUR

INTERVAL DAY TO MINUTE

INTERVAL [-|+] '[-|+]dayInt hh:mm' DAY [(precisionInt)] TO MINUTE

An INTERVAL DAY TO MINUTE literal. If leading field precision is specified it
should be from 1 to 18.

Example:

INTERVAL '10 11:12' DAY TO MINUTE

INTERVAL DAY TO SECOND

INTERVAL [-|+] '[-|+]dayInt hh:mm:ss[.nnnnnnnnn]' DAY [(
342 of 436

precisionInt)]
TO SECOND [(fractionalPrecisionInt)]

An INTERVAL DAY TO SECOND literal. If leading field precision is specified
it should be from 1 to 18. If fractional seconds precision is specified it
should be from 0 to 9.

Example:

INTERVAL '10 11:12:13.123' DAY TO SECOND

INTERVAL HOUR TO MINUTE

INTERVAL [-|+] '[-|+]hh:mm' HOUR [(precisionInt)] TO MINUTE

An INTERVAL HOUR TO MINUTE literal. If leading field precision is specified
it should be from 1 to 18.

Example:

INTERVAL '10:11' HOUR TO MINUTE

INTERVAL HOUR TO SECOND

INTERVAL [-|+] '[-|+]hh:mm:ss[.nnnnnnnnn]' HOUR [(precisionInt)]
TO SECOND [(fractionalPrecisionInt)]

An INTERVAL HOUR TO SECOND literal. If leading field precision is
specified it should be from 1 to 18. If fractional seconds precision is
specified it should be from 0 to 9.

Example:

INTERVAL '10:11:12.123' HOUR TO SECOND

INTERVAL MINUTE TO SECOND

INTERVAL [-|+] '[-|+]mm:ss[.nnnnnnnnn]' MINUTE [(precisionInt)]
TO SECOND [(fractionalPrecisionInt)]

An INTERVAL MINUTE TO SECOND literal. If leading field precision is
specified it should be from 1 to 18. If fractional seconds precision is
specified it should be from 0 to 9.

Example:

343 of 436

INTERVAL '11:12.123' MINUTE TO SECOND

Datetime fields

Datetime field

yearField | monthField | dayOfMonthField
| hourField | minuteField | secondField
| timezoneHourField | timezoneMinuteField
| { timezoneSecondField
| millenniumField | centuryField | decadeField
| quarterField
| millisecondField | microsecondField | nanosecondField
| dayOfYearField
| isoDayOfWeekField | isoWeekField | isoWeekYearField
| dayOfWeekField | weekField | weekYearField
| epochField }

Fields for EXTRACT, DATEADD, DATEDIFF, and DATE_TRUNC functions.

Example:

YEAR

Year field

YEAR | { YYYY | YY | SQL_TSI_YEAR }

Year.

Example:

YEAR

Month field

MONTH | { MM | M | SQL_TSI_MONTH }

Month (1-12).

Example:

MONTH

Day of month field

DAY | { DD | D | SQL_TSI_DAY }

344 of 436

Day of month (1-31).

Example:

DAY

Hour field

HOUR | { HH | SQL_TSI_HOUR }

Hour (0-23).

Example:

HOUR

Minute field

MINUTE | { MI | N | SQL_TSI_MINUTE }

Minute (0-59).

Example:

MINUTE

Second field

SECOND | { SS | S | SQL_TSI_SECOND }

Second (0-59).

Example:

SECOND

Timezone hour field

TIMEZONE_HOUR

Timezone hour (from -18 to +18).

Example:

TIMEZONE_HOUR

Timezone minute field

TIMEZONE_MINUTE

345 of 436

Timezone minute (from -59 to +59).

Example:

TIMEZONE_MINUTE

Timezone second field

TIMEZONE_SECOND

Timezone second (from -59 to +59). Local mean time (LMT) used in the
past may have offsets with seconds. Standard time doesn't use such
offsets.

Example:

TIMEZONE_SECOND

Millennium field

MILLENNIUM

Century, or one thousand years (2001-01-01 to 3000-12-31).

Example:

MILLENNIUM

Century field

CENTURY

Century, or one hundred years (2001-01-01 to 2100-12-31).

Example:

CENTURY

Decade field

DECADE

Decade, or ten years (2020-01-01 to 2029-12-31).

Example:

DECADE

346 of 436

Quarter field

QUARTER

Quarter (1-4).

Example:

QUARTER

Millisecond field

{ MILLISECOND } | { MS }

Millisecond (0-999).

Example:

MILLISECOND

Microsecond field

{ MICROSECOND } | { MCS }

Microsecond (0-999999).

Example:

MICROSECOND

Nanosecond field

{ NANOSECOND } | { NS }

Nanosecond (0-999999999).

Example:

NANOSECOND

Day of year field

{ DAYOFYEAR | DAY_OF_YEAR } | { DOY | DY }

Day of year (1-366).

Example:

DAYOFYEAR

347 of 436

ISO day of week field

{ ISO_DAY_OF_WEEK } | { ISODOW }

ISO day of week (1-7). Monday is 1.

Example:

ISO_DAY_OF_WEEK

ISO week field

ISO_WEEK

ISO week of year (1-53). ISO definition is used when first week of year
should have at least four days and week is started with Monday.

Example:

ISO_WEEK

ISO week year field

{ ISO_WEEK_YEAR } | { ISO_YEAR | ISOYEAR }

Returns the ISO week-based year from a date/time value.

Example:

ISO_WEEK_YEAR

Day of week field

{ DAY_OF_WEEK | DAYOFWEEK } | { DOW }

Day of week (1-7), locale-specific.

Example:

DAY_OF_WEEK

Week field

{ WEEK } | { WW | W | SQL_TSI_WEEK }

Week of year (1-53) using local rules.

Example:

348 of 436

WEEK

Week year field

{ WEEK_YEAR }

Returns the week-based year (locale-specific) from a date/time value.

Example:

WEEK_YEAR

Epoch field

EPOCH

For TIMESTAMP values number of seconds since 1970-01-01 00:00:00 in
local time zone. For TIMESTAMP WITH TIME ZONE values number of
seconds since 1970-01-01 00:00:00 in UTC time zone. For DATE values
number of seconds since 1970-01-01. For TIME values number of seconds
since midnight.

Example:

EPOCH

Other Grammar

Alias

name

An alias is a name that is only valid in the context of the statement.

Example:

A

And Condition

condition [{ AND condition } [...]]

Value or condition.

Example:

ID=1 AND NAME='Hi'

349 of 436

Array element reference

{ array | json } '[' indexInt ']'

Returns array element at specified 1-based index. Returns NULL if array or
json is null, index is null, or element with specified index isn't found in
JSON.

Example:

A[2]
M[5][8]

Field reference

(expression).fieldName

Returns field value from the row value or JSON value. Returns NULL if
value is null or field with specified name isn't found in JSON. Expression on
the left must be enclosed in parentheses if it is an identifier (column
name), in other cases they aren't required.

Example:

(R).FIELD1
(TABLE1.COLUMN2).FIELD.SUBFIELD
JSON '{"a": 1, "b": 2}'."b"

Array value constructor by query

ARRAY (query)

Collects values from the subquery into array.

The subquery should have exactly one column. Number of elements in the
returned array is the number of rows in the subquery. NULL values are
included into array.

Example:

ARRAY(SELECT * FROM SYSTEM_RANGE(1, 10));

Case expression

simpleCase | searchedCase

350 of 436

Performs conditional evaluation of expressions.

Example:

CASE A WHEN 'a' THEN 1 ELSE 2 END
CASE WHEN V > 10 THEN 1 WHEN V < 0 THEN 2 END
CASE WHEN A IS NULL THEN 'Null' ELSE 'Not null' END

Simple case

CASE expression
{ WHEN { expression | conditionRightHandSide } [,...] THEN expression }
[...]
[ELSE expression] END

Returns then expression from the first when clause where one of its
operands was was evaluated to TRUE for the case expression. If there are
no such clauses, returns else expression or NULL if it is absent.

Plain expressions are tested for equality with the case expression, NULL is
not equal to NULL. Right sides of conditions are evaluated with the case
expression on the left side.

Example:

CASE CNT WHEN IS NULL THEN 'Null' WHEN 0 THEN 'No' WHEN 1 THEN
'One' WHEN 2, 3 THEN 'Few' ELSE 'Some' END

Searched case

CASE { WHEN expression THEN expression } [...]
[ELSE expression] END

Returns the first expression where the condition is true. If no else part is
specified, return NULL.

Example:

CASE WHEN CNT<10 THEN 'Low' ELSE 'High' END
CASE WHEN A IS NULL THEN 'Null' ELSE 'Not null' END

Cast specification

CAST(value AS dataTypeOrDomain [FORMAT templateString])

351 of 436

Converts a value to another data type. The following conversion rules are
used: When converting a number to a boolean, 0 is false and every other
value is true. When converting a boolean to a number, false is 0 and true
is 1. When converting a number to a number of another type, the value is
checked for overflow. When converting a string to binary, UTF-8 encoding
is used. Note that some data types may need explicitly specified precision
to avoid overflow or rounding.

Template may only be specified for casts from datetime data types to
character string data types and for casts from character string data types
to datetime data types.

'-', '.', '/', ',', '''', ';', ':' and ' ' (space) characters can be used as delimiters.

Y, YY, YYY, YYYY represent last 1, 2, 3, or 4 digits of year. YYYY, if
delimited, can also be used to parse any year, including negative years.
When a year is parsed with Y, YY, or YYY pattern missing leading digits are
filled using digits from the current year.

RR and RRRR have the same meaning as YY and YYYY for formatting.
When a year is parsed with RR, the resulting year is within current year -
49 years and current year + 50 years in H2, other database systems may
use different range of years.

MM represent a month.

DD represent a day of month.

DDD represent a day of year, if this pattern in specified, MM and DD may
not be specified.

HH24 represent an hour (from 0 to 23).

HH and HH12 represent an hour (from 1 to 12), this pattern may only be
used together with A.M. or P.M. pattern. These patterns may not be used
together with HH24.

MI represent minutes.

SS represent seconds of minute.

SSSSS represent seconds of day, this pattern may not be used together
with HH24, HH (HH12), A.M. (P.M.), MI or SS pattern.

FF1, FF2, ..., FF9 represent fractional seconds.

352 of 436

TZH, TZM and TZH represent hours, minutes and seconds of time zone
offset.

Multiple patterns for the same datetime field may not be specified.

If year is not specified, current year is used. If month is not specified,
current month is used. If day is not specified, 1 is used.

If some fields of time or time zone are not specified, 0 is used.

Example:

CAST(NAME AS INT);
CAST(TIMESTAMP '2010-01-01 10:40:00.123456' AS TIME(6));
CAST('12:00:00 P.M.' AS TIME FORMAT 'HH:MI:SS A.M.');

Cipher

AES

Only the algorithm AES (AES-128) is supported currently.

Example:

AES

Column Definition

dataTypeOrDomain [VISIBLE | INVISIBLE]
[{ DEFAULT expression
| GENERATED ALWAYS AS (generatedColumnExpression)
| GENERATED {ALWAYS | BY DEFAULT} AS IDENTITY [(sequenceOption
[...])]}]
[ON UPDATE expression]
[DEFAULT ON NULL]
[SELECTIVITY selectivityInt] [COMMENT expression]
[columnConstraintDefinition] [...]

The default expression is used if no explicit value was used when adding a
row and when DEFAULT value was specified in an update command.

A column is either a generated column or a base column. The generated
column has a generated column expression. The generated column
expression is evaluated and assigned whenever the row changes. This
expression may reference base columns of the table, but may not
reference other data. The value of the generated column cannot be set

353 of 436

explicitly. Generated columns may not have DEFAULT or ON UPDATE
expressions.

On update column expression is used if row is updated, at least one
column has a new value that is different from its previous value and value
for this column is not set explicitly in update statement.

Identity column is a column generated with a sequence. The column
declared as the identity column with IDENTITY data type or with IDENTITY
() clause is implicitly the primary key column of this table. GENERATED
ALWAYS AS IDENTITY, GENERATED BY DEFAULT AS IDENTITY, and
AUTO_INCREMENT clauses do not create the primary key constraint
automatically. GENERATED ALWAYS AS IDENTITY clause indicates that
column can only be generated by the sequence, its value cannot be set
explicitly. Identity column has implicit NOT NULL constraint. Identity
column may not have DEFAULT or ON UPDATE expressions.

DEFAULT ON NULL makes NULL value work as DEFAULT value is
assignments to this column.

The invisible column will not be displayed as a result of SELECT * query.
Otherwise, it works as normal column.

Column constraint definitions are not supported for ALTER statements.

Example:

CREATE TABLE TEST(ID INT PRIMARY KEY,
 NAME VARCHAR(255) DEFAULT '' NOT NULL);
CREATE TABLE TEST(ID BIGINT GENERATED ALWAYS AS IDENTITY
PRIMARY KEY,
 QUANTITY INT, PRICE NUMERIC(10, 2),
 AMOUNT NUMERIC(20, 2) GENERATED ALWAYS AS (QUANTITY *
PRICE));

Column Constraint Definition

[constraintNameDefinition]
NOT NULL | PRIMARY KEY | UNIQUE [nullsDistinct] |
referencesSpecification | CHECK (condition)

NOT NULL disallows NULL value for a column.

354 of 436

PRIMARY KEY and UNIQUE require unique values. PRIMARY KEY also
disallows NULL values and marks the column as a primary key. UNIQUE
constraint allows NULL values, if nulls distinct clause is not specified, the
default is NULLS DISTINCT, excluding some compatibility modes.

Referential constraint requires values that exist in other column (usually in
another table).

Check constraint require a specified condition to return TRUE or
UNKNOWN (NULL). It can reference columns of the table, and can
reference objects that exist while the statement is executed. Conditions
are only checked when a row is added or modified in the table where the
constraint exists.

Example:

NOT NULL
PRIMARY KEY
UNIQUE
REFERENCES T2(ID)
CHECK (VALUE > 0)

Comment

bracketedComment | -- anything | // anything

Comments can be used anywhere in a command and are ignored by the
database. Line comments -- and // end with a newline.

Example:

-- comment
/* comment */

Bracketed comment

/* [[bracketedComment] [anything] [...]] */

Comments can be used anywhere in a command and are ignored by the
database. Bracketed comments /* */ can be nested and can be multiple
lines long.

Example:

355 of 436

/* comment */
/* comment /* nested comment */ comment */

Compare

<> | <= | >= | = | < | > | { != } | &&

Comparison operator. The operator != is the same as <>. The operator
&& means overlapping; it can only be used with geometry types.

Example:

<>

Condition

operand [conditionRightHandSide]
| NOT condition
| EXISTS (query)
| UNIQUE [nullsDistinct] (query)
| INTERSECTS (operand, operand)

Boolean value or condition.

NOT condition negates the result of subcondition and returns TRUE,
FALSE, or UNKNOWN (NULL).

EXISTS predicate tests whether the result of the specified subquery is not
empty and returns TRUE or FALSE.

UNIQUE predicate tests absence of duplicate rows in the specified
subquery and returns TRUE or FALSE. If nulls distinct clause is not
specified, NULLS DISTINCT is implicit.

INTERSECTS checks whether 2D bounding boxes of specified geometries
intersect with each other and returns TRUE or FALSE.

Example:

ID <> 2
NOT(A OR B)
EXISTS (SELECT NULL FROM TEST T WHERE T.GROUP_ID = P.ID)
UNIQUE (SELECT A, B FROM TEST T WHERE T.CATEGORY = CAT)
INTERSECTS(GEOM1, GEOM2)

356 of 436

Condition Right Hand Side

comparisonRightHandSide
| quantifiedComparisonRightHandSide
| nullPredicateRightHandSide
| distinctPredicateRightHandSide
| quantifiedDistinctPredicateRightHandSide
| booleanTestRightHandSide
| typePredicateRightHandSide
| jsonPredicateRightHandSide
| betweenPredicateRightHandSide
| inPredicateRightHandSide
| likePredicateRightHandSide
| regexpPredicateRightHandSide

The right hand side of a condition.

Example:

> 10
IS NULL
IS NOT NULL
IS NOT DISTINCT FROM B
IS OF (DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE)
IS JSON OBJECT WITH UNIQUE KEYS
LIKE 'Jo%'

Comparison Right Hand Side

compare operand

Right side of comparison predicates.

Example:

> 10

Quantified Comparison Right Hand Side

compare { ALL | ANY | SOME } ({ query | { array } })

Right side of quantified comparison predicates.

Quantified comparison predicate ALL returns TRUE if specified comparison
operation between left size of condition and each row from a subquery or

357 of 436

each element of array returns TRUE, including case when there are no
rows (elements). ALL predicate returns FALSE if at least one such
comparison returns FALSE. Otherwise it returns UNKNOWN.

Quantified comparison predicates ANY and SOME return TRUE if specified
comparison operation between left size of condition and at least one row
from a subquery or at least one element of array returns TRUE. ANY and
SOME predicates return FALSE if all such comparisons return FALSE.
Otherwise they return UNKNOWN.

Note that these predicates have priority over ANY and SOME aggregate
functions with subquery on the right side. Use parentheses around
aggregate function.

If version with array is required and this array is returned from a
subquery, wrap this subquery with a cast to distinguish this operation
from standard quantified comparison predicate with a query.

Example:

< ALL(SELECT V FROM TEST)
= ANY(ARRAY_COLUMN)
= ANY(CAST((SELECT ARRAY_COLUMN FROM OTHER_TABLE WHERE ID =
5) AS INTEGER ARRAY)

Null Predicate Right Hand Side

IS [NOT] NULL

Right side of null predicate.

Check whether the specified value(s) are NULL values. To test multiple
values a row value must be specified. IS NULL returns TRUE if and only if
all values are NULL values; otherwise it returns FALSE. IS NOT NULL
returns TRUE if and only if all values are not NULL values; otherwise it
returns FALSE.

Example:

IS NULL

Distinct Predicate Right Hand Side

IS [NOT] [DISTINCT FROM] operand

358 of 436

Right side of distinct predicate.

Distinct predicate is null-safe, meaning NULL is considered the same as
NULL, and the condition never evaluates to UNKNOWN.

Example:

IS NOT DISTINCT FROM OTHER

Quantified Distinct Predicate Right Hand Side

IS [NOT] [DISTINCT FROM] { ALL | ANY | SOME } ({ query | array })

Right side of quantified distinct predicate.

Quantified distinct predicate is null-safe, meaning NULL is considered the
same as NULL, and the condition never evaluates to UNKNOWN.

Quantified distinct predicate ALL returns TRUE if specified distinct
predicate between left size of condition and each row from a subquery or
each element of array returns TRUE, including case when there are no
rows. Otherwise it returns FALSE.

Quantified distinct predicates ANY and SOME return TRUE if specified
distinct predicate between left size of condition and at least one row from
a subquery or at least one element of array returns TRUE. Otherwise they
return FALSE.

Note that these predicates have priority over ANY and SOME aggregate
functions with subquery on the right side. Use parentheses around
aggregate function.

If version with array is required and this array is returned from a
subquery, wrap this subquery with a cast to distinguish this operation
from quantified comparison predicate with a query.

Example:

IS DISTINCT FROM ALL(SELECT V FROM TEST)
IS NOT DISTINCT FROM ANY(ARRAY_COLUMN)
IS NOT DISTINCT FROM ANY(CAST((SELECT ARRAY_COLUMN FROM
OTHER_TABLE WHERE ID = 5) AS INTEGER ARRAY)

Boolean Test Right Hand Side

IS [NOT] { TRUE | FALSE | UNKNOWN }

359 of 436

Right side of boolean test.

Checks whether the specified value is (not) TRUE, FALSE, or UNKNOWN
(NULL) and return TRUE or FALSE. This test is null-safe.

Example:

IS TRUE

Type Predicate Right Hand Side

IS [NOT] OF (dataType [,...])

Right side of type predicate.

Checks whether the data type of the specified operand is one of the
specified data types. Some data types have multiple names, these names
are considered as equal here. Domains and their base data types are
currently not distinguished from each other. Precision and scale are also
ignored. If operand is NULL, the result is UNKNOWN.

Example:

IS OF (INTEGER, BIGINT)

JSON Predicate Right Hand Side

IS [NOT] JSON [VALUE | ARRAY | OBJECT | SCALAR]
 [[WITH | WITHOUT] UNIQUE [KEYS]]

Right side of JSON predicate.

Checks whether value of the specified string, binary data, or a JSON is a
valid JSON. If ARRAY, OBJECT, or SCALAR is specified, only JSON items of
the specified type are considered as valid. If WITH UNIQUE [KEYS] is
specified only JSON with unique keys is considered as valid. This predicate
isn't null-safe, it returns UNKNOWN if operand is NULL.

Example:

IS JSON OBJECT WITH UNIQUE KEYS

Between Predicate Right Hand Side

[NOT] BETWEEN [ASYMMETRIC | SYMMETRIC] operand AND operand

Right side of between predicate.

360 of 436

Checks whether the value is within the range inclusive. V BETWEEN
[ASYMMETRIC] A AND B is equivalent to A <= V AND V <= B. V
BETWEEN SYMMETRIC A AND B is equivalent to A <= V AND V <= B OR A
>= V AND V >= B.

Example:

BETWEEN LOW AND HIGH

In Predicate Right Hand Side

[NOT] IN ({ query | expression [,...] })

Right side of in predicate.

Checks presence of value in the specified list of values or in result of the
specified query.

Returns TRUE if row value on the left side is equal to one of values on the
right side, FALSE if all comparison operations were evaluated to FALSE or
right side has no values, and UNKNOWN otherwise.

This operation is logically equivalent to OR between comparison
operations comparing left side and each value from the right side.

Example:

IN (A, B, C)
IN (SELECT V FROM TEST)

Like Predicate Right Hand Side

[NOT] { LIKE | { ILIKE } } operand [ESCAPE string]

Right side of like predicate.

The wildcards characters are _ (any one character) and % (any
characters). The database uses an index when comparing with LIKE
except if the operand starts with a wildcard. To search for the characters
% and _, the characters need to be escaped. The default escape character
is \ (backslash). To select no escape character, use ESCAPE '' (empty
string). At most one escape character is allowed. Each character that
follows the escape character in the pattern needs to match exactly.
Patterns that end with an escape character are invalid and the expression
returns NULL.

361 of 436

ILIKE does a case-insensitive compare.

Example:

LIKE 'a%'

Regexp Predicate Right Hand Side

{ [NOT] REGEXP operand }

Right side of Regexp predicate.

Regular expression matching is used. See Java Matcher.find for details.

Example:

REGEXP '[a-z]'

Nulls Distinct

NULLS { DISTINCT | NOT DISTINCT | { ALL DISTINCT } }

Are nulls distinct for unique constraint, index, or predicate.

If NULLS DISTINCT is specified, rows with null value in any column are
distinct. If NULLS ALL DISTINCT is specified, rows with null value in all
columns are distinct. If NULLS NOT DISTINCT is specified, null values are
identical.

Treatment of null values inside composite data types is not affected.

Example:

NULLS DISTINCT
NULLS NOT DISTINCT

Table Constraint Definition

[constraintNameDefinition]
{ PRIMARY KEY [HASH] (columnName [,...]) }
| UNIQUE [nullsDistinct] ({ columnName [,...] | VALUE })
| referentialConstraint
| CHECK (condition)

Defines a constraint.

PRIMARY KEY and UNIQUE require unique values. PRIMARY KEY also
disallows NULL values and marks the column as a primary key, a table can

362 of 436

have only one primary key. UNIQUE constraint supports NULL values and
rows with NULL value in any column are considered as unique. UNIQUE
constraint allows NULL values, if nulls distinct clause is not specified, the
default is NULLS DISTINCT, excluding some compatibility modes. UNIQUE
(VALUE) creates a unique constraint on entire row, excluding invisible
columns; but if new columns will be added to the table, they will not be
included into this constraint.

Referential constraint requires values that exist in other column(s)
(usually in another table).

Check constraint requires a specified condition to return TRUE or
UNKNOWN (NULL). It can reference columns of the table, and can
reference objects that exist while the statement is executed. Conditions
are only checked when a row is added or modified in the table where the
constraint exists.

Example:

PRIMARY KEY(ID, NAME)

Constraint Name Definition

CONSTRAINT [IF NOT EXISTS] newConstraintName

Defines a constraint name.

Example:

CONSTRAINT CONST_ID

Csv Options

charsetString [, fieldSepString [, fieldDelimString [, escString [,
nullString]]]]
| optionString

Optional parameters for CSVREAD and CSVWRITE. Instead of setting the
options one by one, all options can be combined into a space separated
key-value pairs, as follows: STRINGDECODE('charset=UTF-8 escape=\"
fieldDelimiter=\" fieldSeparator=, ' || 'lineComment=# lineSeparator=\n
null= rowSeparator='). The following options are supported:

caseSensitiveColumnNames (true or false; disabled by default),

363 of 436

charset (for example 'UTF-8'),

escape (the character that escapes the field delimiter),

fieldDelimiter (a double quote by default),

fieldSeparator (a comma by default),

lineComment (disabled by default),

lineSeparator (the line separator used for writing; ignored for reading),

null Support reading existing CSV files that contain explicit null delimiters.
Note that an empty, unquoted values are also treated as null.

quotedNulls (quotes the nullString. true of false; disabled by default),

preserveWhitespace (true or false; disabled by default),

writeColumnHeader (true or false; enabled by default).

For a newline or other special character, use STRINGDECODE as in the
example above. A space needs to be escaped with a backslash ('\ '), and a
backslash needs to be escaped with another backslash ('\\'). All other
characters are not to be escaped, that means newline and tab characters
are written as such.

Example:

CALL CSVWRITE('test2.csv', 'SELECT * FROM TEST', 'charset=UTF-8
fieldSeparator=|');

Data Change Delta Table

{ OLD | NEW | FINAL } TABLE
({ insert | update | delete | { mergeInto } | mergeUsing })

Executes the inner data change command and returns old, new, or final
rows.

OLD is not allowed for INSERT command. It returns old rows.

NEW and FINAL are not allowed for DELETE command.

NEW returns new rows after evaluation of default expressions, but before
execution of triggers.

FINAL returns new rows after execution of triggers.

Example:

364 of 436

SELECT ID FROM FINAL TABLE (INSERT INTO TEST (A, B) VALUES (1, 2))

Data Type or Domain

dataType | [schemaName.]domainName

A data type or domain name.

Example:

INTEGER
MY_DOMAIN

Data Type

predefinedType | arrayType | rowType

A data type.

Example:

INTEGER

Predefined Type

characterType | characterVaryingType | characterLargeObjectType
| binaryType | binaryVaryingType | binaryLargeObjectType
| booleanType
| smallintType | integerType | bigintType
| numericType | realType | doublePrecisionType | decfloatType
| dateType | timeType | timeWithTimeZoneType
| timestampType | timestampWithTimeZoneType
| intervalType
| { tinyintType | javaObjectType | enumType
| geometryType | jsonType | uuidType }

A predefined data type.

Example:

INTEGER

Digit

0-9

A digit.

365 of 436

Example:

0

Expression

andCondition [{ OR andCondition } [...]]

Value or condition.

Example:

ID=1 OR NAME='Hi'

Factor

term [{ { * | / | { % } } term } [...]]

A value or a numeric factor.

Example:

ID * 10

Grouping element

expression | (expression [, ...]) | ()

A grouping element of GROUP BY clause.

Example:

A
(B, C)
()

Hex

[' ' [...]] { { digit | a-f | A-F } [' ' [...]] { digit | a-f | A-F } [' ' [...]] } [...]

The hexadecimal representation of a number or of bytes with optional
space characters. Two hexadecimal digit characters are one byte.

Example:

cafe
11 22 33
a b c d

366 of 436

Index Column

columnName [ASC | DESC] [NULLS { FIRST | LAST }]

Indexes this column in ascending or descending order. Usually it is not
required to specify the order; however doing so will speed up large
queries that order the column in the same way.

Example:

NAME

Insert values

VALUES { DEFAULT|expression | [ROW] ({DEFAULT|expression} [,...]) },
[,...]

Values for INSERT statement.

Example:

VALUES (1, 'Test')

Interval qualifier

YEAR [(precisionInt)] [TO MONTH]
| MONTH [(precisionInt)]
| DAY [(precisionInt)] [TO { HOUR | MINUTE | SECOND [(scaleInt)] }]
| HOUR [(precisionInt)] [TO { MINUTE | SECOND [(scaleInt)] }]
| MINUTE [(precisionInt)] [TO SECOND [(scaleInt)]]
| SECOND [(precisionInt [, scaleInt])]

An interval qualifier.

Example:

DAY TO SECOND

Join specification

ON expression | USING (columnName [,...])

Specifies a join condition or column names.

Example:

ON B.ID = A.PARENT_ID
USING (ID)

367 of 436

Merge when clause

mergeWhenMatchedClause|mergeWhenNotMatchedClause

WHEN MATCHED or WHEN NOT MATCHED clause for MERGE USING
command.

Example:

WHEN MATCHED THEN DELETE

Merge when matched clause

WHEN MATCHED [AND expression] THEN
UPDATE SET setClauseList | DELETE

WHEN MATCHED clause for MERGE USING command.

Updates or deletes rows in a target table.

Example:

WHEN MATCHED THEN UPDATE SET NAME = S.NAME
WHEN MATCHED THEN DELETE

Merge when not matched clause

WHEN NOT MATCHED [AND expression] THEN INSERT
[(columnName [,...])]
[overrideClause]
VALUES ({DEFAULT|expression} [,...])

WHEN NOT MATCHED clause for MERGE USING command.

Inserts rows into a target table.

If column names aren't specified a list of all visible columns in the target
table is assumed.

Example:

WHEN NOT MATCHED THEN INSERT (ID, NAME) VALUES (S.ID, S.NAME)

Name

{ { A-Z|_ } [{ A-Z|_|0-9 } [...]] } | quotedName

368 of 436

With default settings unquoted names are converted to upper case. The
maximum name length is 256 characters.

Identifiers in H2 are case sensitive by default. Because unquoted names
are converted to upper case, they can be written in any case anyway.
When both quoted and unquoted names are used for the same identifier
the quoted names must be written in upper case. Identifiers with
lowercase characters can be written only as a quoted name, they aren't
accessible with unquoted names.

If DATABASE_TO_UPPER setting is set to FALSE the unquoted names aren't
converted to upper case.

If DATABASE_TO_LOWER setting is set to TRUE the unquoted names are
converted to lower case instead.

If CASE_INSENSITIVE_IDENTIFIERS setting is set to TRUE all identifiers are
case insensitive.

Example:

TEST

Operand

summand [{ || summand } [...]]

Performs the concatenation of character string, binary string, or array
values. In the default mode, the result is NULL if either parameter is NULL.
In compatibility modes result of string concatenation with NULL parameter
can be different.

Example:

'Hi' || ' Eva'
X'AB' || X'CD'
ARRAY[1, 2] || 3
1 || ARRAY[2, 3]
ARRAY[1, 2] || ARRAY[3, 4]

Override clause

OVERRIDING { USER | SYSTEM } VALUE

369 of 436

If OVERRIDING USER VALUE is specified, INSERT statement ignores the
provided value for identity column and generates a new one instead.

If OVERRIDING SYSTEM VALUE is specified, INSERT statement assigns the
provided value to identity column.

If neither clauses are specified, INSERT statement assigns the provided
value to GENERATED BY DEFAULT AS IDENTITY column, but throws an
exception if value is specified for GENERATED ALWAYS AS IDENTITY
column.

Example:

OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

Query

select | explicitTable | tableValue

A query, such as SELECT, explicit table, or table value.

Example:

SELECT ID FROM TEST;
TABLE TEST;
VALUES (1, 2), (3, 4);

Quoted Name

"anything"
| U&"anything" [UESCAPE 'anything']

Case of characters in quoted names is preserved as is. Such names can
contain spaces. The maximum name length is 256 characters. Two double
quotes can be used to create a single double quote inside an identifier.
With default settings identifiers in H2 are case sensitive.

Identifiers staring with U& are Unicode identifiers. All identifiers in H2 may
have Unicode characters, but Unicode identifiers may contain Unicode
escape sequences \0000 or \+000000, where \ is an escape character,
0000 and 000000 are Unicode character codes in hexadecimal notation.
Optional UESCAPE clause may be used to specify another escape
character, with exception for single quote, double quote, plus sign, and
hexadecimal digits (0-9, a-f, and A-F). By default the backslash is used.

370 of 436

Two escape characters can be used to include a single character inside an
Unicode identifier. Two double quotes can be used to create a single
double quote inside an Unicode identifier.

Example:

"FirstName"
U&"\00d6ffnungszeit"
U&"/00d6ffnungszeit" UESCAPE '/'

Referential Constraint

FOREIGN KEY (columnName [,...]) referencesSpecification

Defines a referential constraint.

Example:

FOREIGN KEY(ID) REFERENCES TEST(ID)

References Specification

REFERENCES [refTableName] [(refColumnName [,...])]
[ON DELETE referentialAction] [ON UPDATE referentialAction]

Defines a referential specification of a referential constraint. If the table
name is not specified, then the same table is referenced. RESTRICT is the
default action. If the referenced columns are not specified, then the
primary key columns are used. Referential constraint requires an existing
unique or primary key constraint on referenced columns, this constraint
must include all referenced columns in any order and must not include
any other columns. Some tables may not be referenced, such as metadata
tables.

Example:

REFERENCES TEST(ID)

Referential Action

CASCADE | RESTRICT | NO ACTION | SET { DEFAULT | NULL }

The action CASCADE will cause conflicting rows in the referencing (child)
table to be deleted or updated. RESTRICT is the default action. As this
database does not support deferred checking, RESTRICT and NO ACTION

371 of 436

will both throw an exception if the constraint is violated. The action SET
DEFAULT will set the column in the referencing (child) table to the default
value, while SET NULL will set it to NULL.

Example:

CASCADE
SET NULL

Script Compression Encryption

[COMPRESSION { DEFLATE | LZF | ZIP | GZIP }]
[CIPHER cipher PASSWORD string]

The compression and encryption algorithm to use for script files. When
using encryption, only DEFLATE and LZF are supported. LZF is faster but
uses more space.

Example:

COMPRESSION LZF

Select order

{ expression | { int } } [ASC | DESC] [NULLS { FIRST | LAST }]

Sorts the result by the given column number, or by an expression. If the
expression is a single parameter, then the value is interpreted as a
column number. Negative column numbers reverse the sort order.

Example:

NAME DESC NULLS LAST

Row value expression

ROW (expression, [,...])
| ([expression, expression [,...]])
| expression

A row value expression.

Example:

372 of 436

ROW (1)
(1, 2)
1

Select Expression

wildcardExpression | expression [[AS] columnAlias]

An expression in a SELECT statement.

Example:

ID AS DOCUMENT_ID

Sequence value expression

{ NEXT | { CURRENT } } VALUE FOR [schemaName.]sequenceName

The next or current value of a sequence.

When the next value is requested the sequence is incremented and the
current value of the sequence and the last identity in the current session
are updated with the generated value. The next value of the sequence is
generated only once for each processed row. If this expression is used
multiple times with the same sequence it returns the same value within a
processed row. Used values are never re-used, even when the transaction
is rolled back.

Current value may only be requested after generation of the sequence
value in the current session. It returns the latest generated value for the
current session.

If a single command contains next and current value expressions for the
same sequence there is no guarantee that the next value expression will
be evaluated before the evaluation of current value expression.

Example:

NEXT VALUE FOR SEQ1
CURRENT VALUE FOR SCHEMA2.SEQ2

Sequence option

START WITH long
| { RESTART WITH long }

373 of 436

| basicSequenceOption

Option of a sequence.

START WITH is used to set the initial value of the sequence. If initial value
is not defined, MINVALUE for incrementing sequences and MAXVALUE for
decrementing sequences is used.

RESTART is used to immediately restart the sequence with the specified
value.

Example:

START WITH 10000
NO CACHE

Alter sequence option

{ START WITH long }
| RESTART [WITH long]
| basicSequenceOption

Option of a sequence.

START WITH is used to change the initial value of the sequence. It does
not affect the current value of the sequence, it only changes the
preserved initial value that is used for simple RESTART without a value.

RESTART is used to restart the sequence from its initial value or with the
specified value.

Example:

START WITH 10000
NO CACHE

Alter identity column option

{ START WITH long }
| RESTART [WITH long]
| SET basicSequenceOption

Option of an identity column.

START WITH is used to set or change the initial value of the sequence.
START WITH does not affect the current value of the sequence, it only

374 of 436

changes the preserved initial value that is used for simple RESTART
without a value.

RESTART is used to restart the sequence from its initial value or with the
specified value.

Example:

START WITH 10000
SET NO CACHE

Basic sequence option

INCREMENT BY long
| MINVALUE long | NO MINVALUE | { NOMINVALUE }
| MAXVALUE long | NO MAXVALUE | { NOMAXVALUE }
| CYCLE | NO CYCLE | { EXHAUSTED } | { NOCYCLE }
| { CACHE long } | { NO CACHE } | { NOCACHE }

Basic option of a sequence.

INCREMENT BY specifies the step of the sequence, may be positive or
negative, but may not be zero. The default is 1.

MINVALUE and MAXVALUE specify the bounds of the sequence.

Sequences with CYCLE option start the generation again from MINVALUE
(incrementing sequences) or MAXVALUE (decrementing sequences)
instead of exhausting with an error. Sequences with EXHAUSTED option
can't return values until they will be restarted.

The CACHE option sets the number of pre-allocated numbers. If the
system crashes without closing the database, at most this many numbers
are lost. The default cache size is 32 if sequence has enough range of
values. NO CACHE option or the cache size 1 or lower disable the cache. If
CACHE option is specified, it cannot be larger than the total number of
values that sequence can produce within a cycle.

Example:

MAXVALUE 100000
CYCLE
NO CACHE

375 of 436

Set clause list

{ { updateTarget = { DEFAULT | expression } }
| { (updateTarget [,...]) = { rowValueExpression | (query) } } } [,...]

List of SET clauses.

Each column may be specified only once in update targets.

Example:

NAME = 'Test', PRICE = 2
(A, B) = (1, 2)
(A, B) = (1, 2), C = 3
(A, B) = (SELECT X, Y FROM OTHER T2 WHERE T1.ID = T2.ID)

Sort specification

expression [ASC | DESC] [NULLS { FIRST | LAST }]

Sorts the result by an expression.

Example:

X ASC NULLS FIRST

Sort specification list

sortSpecification [,...]

Sorts the result by expressions.

Example:

V
A, B DESC NULLS FIRST

Summand

factor [{ { + | - } factor } [...]]

A value or a numeric sum.

Please note the text concatenation operator is ||.

Example:

ID + 20

376 of 436

Table Expression

{ [schemaName.] tableName
| (query)
| unnest
| table
| dataChangeDeltaTable }
[[AS] newTableAlias [(columnName [,...])]]
[USE INDEX ([indexName [,...]])]
[{ { LEFT | RIGHT } [OUTER] | [INNER] | CROSS | NATURAL }
JOIN tableExpression [joinSpecification]]

Joins a table. The join specification is not supported for cross and natural
joins. A natural join is an inner join, where the condition is automatically
on the columns with the same name.

Example:

TEST1 AS T1 LEFT JOIN TEST2 AS T2 ON T1.ID = T2.PARENT_ID

Update target

columnName ['[' int ']' [...]]

Column or element of a column of ARRAY data type.

If array indexes are specified, column must have a compatible ARRAY data
type and updated rows may not have NULL values in this column. It
means for C[2][3] both C and C[2] may not be NULL. Too short arrays are
expanded, missing elements are set to NULL.

Example:

A
B[1]
C[2][3]

Within group specification

WITHIN GROUP (ORDER BY sortSpecificationList)

Group specification for ordered set functions.

Example:

WITHIN GROUP (ORDER BY ID DESC)

377 of 436

Wildcard expression

[[schemaName.]tableAlias.]*
[EXCEPT ([[schemaName.]tableAlias.]columnName, [,...])]

A wildcard expression in a SELECT statement. A wildcard expression
represents all visible columns. Some columns can be excluded with
optional EXCEPT clause.

Example:

*
* EXCEPT (DATA)

Window name or specification

windowName | windowSpecification

A window name or inline specification for a window function or aggregate.

Window functions in H2 may require a lot of memory for large queries.

Example:

W1
(ORDER BY ID)

Window specification

([existingWindowName]
[PARTITION BY expression [,...]] [ORDER BY sortSpecificationList]
[windowFrame])

A window specification for a window, window function or aggregate.

If name of an existing window is specified its clauses are used by default.

Optional window partition clause separates rows into independent
partitions. Each partition is processed separately. If this clause is not
present there is one implicit partition with all rows.

Optional window order clause specifies order of rows in the partition. If
some rows have the same order position they are considered as a group
of rows in optional window frame clause.

Optional window frame clause specifies which rows are processed by a
window function, see its documentation for a more details.

378 of 436

Example:

()
(W1 ORDER BY ID)
(PARTITION BY CATEGORY)
(PARTITION BY CATEGORY ORDER BY NAME, ID)
(ORDER BY Y RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW EXCLUDE TIES)

Window frame

ROWS|RANGE|GROUP
{windowFramePreceding|BETWEEN windowFrameBound AND
windowFrameBound}
[EXCLUDE {CURRENT ROW|GROUP|TIES|NO OTHERS}]

A window frame clause. May be specified only for aggregates and
FIRST_VALUE(), LAST_VALUE(), and NTH_VALUE() window functions.

If this clause is not specified for an aggregate or window function that
supports this clause the default window frame depends on window order
clause. If window order clause is also not specified the default window
frame contains all the rows in the partition. If window order clause is
specified the default window frame contains all preceding rows and all
rows from the current group.

Window frame unit determines how rows or groups of rows are selected
and counted. If ROWS is specified rows are not grouped in any way and
relative numbers of rows are used in bounds. If RANGE is specified rows
are grouped according window order clause, preceding and following
values mean the difference between value in the current row and in the
target rows, and CURRENT ROW in bound specification means current
group of rows. If GROUPS is specified rows are grouped according window
order clause, preceding and following values means relative number of
groups of rows, and CURRENT ROW in bound specification means current
group of rows.

If only window frame preceding clause is specified it is treated as
BETWEEN windowFramePreceding AND CURRENT ROW.

Optional window frame exclusion clause specifies rows that should be
excluded from the frame. EXCLUDE CURRENT ROW excludes only the
current row regardless the window frame unit. EXCLUDE GROUP excludes

379 of 436

the whole current group of rows, including the current row. EXCLUDE TIES
excludes the current group of rows, but not the current row. EXCLUDE NO
OTHERS is default and it does not exclude anything.

Example:

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW EXCLUDE
TIES

Window frame preceding

UNBOUNDED PRECEDING|value PRECEDING|CURRENT ROW

A window frame preceding clause. If value is specified it should not be
negative.

Example:

UNBOUNDED PRECEDING
1 PRECEDING
CURRENT ROW

Window frame bound

UNBOUNDED PRECEDING|value PRECEDING|CURRENT ROW
|value FOLLOWING|UNBOUNDED FOLLOWING

A window frame bound clause. If value is specified it should not be
negative.

Example:

UNBOUNDED PRECEDING
UNBOUNDED FOLLOWING
1 FOLLOWING
CURRENT ROW

Term

{ value
| column
| ?[int]
| sequenceValueExpression
| function
| { - | + } term

380 of 436

| (expression)
| arrayElementReference
| fieldReference
| (query)
| caseExpression
| castSpecification
| userDefinedFunctionName }
[timeZone | intervalQualifier]

A value. Parameters can be indexed, for example ?1 meaning the first
parameter.

Interval qualifier may only be specified for a compatible value or for a
subtraction operation between two datetime values. The subtraction
operation ignores the leading field precision of the qualifier.

Example:

'Hello'

Time zone

AT { TIME ZONE { intervalHourToMinute | intervalHourToSecond | { string
} } | LOCAL }

A time zone. Converts the timestamp with or without time zone into
timestamp with time zone at specified time zone. If a day-time interval is
specified as a time zone, it may not have fractional seconds and must be
between -18 to 18 hours inclusive.

Example:

AT LOCAL
AT TIME ZONE '2'
AT TIME ZONE '-6:00'
AT TIME ZONE INTERVAL '10:00' HOUR TO MINUTE
AT TIME ZONE INTERVAL '10:00:00' HOUR TO SECOND
AT TIME ZONE 'UTC'
AT TIME ZONE 'Europe/London'

Column

[[schemaName.]tableAlias.] { columnName | { _ROWID_ } }

381 of 436

A column name with optional table alias and schema. _ROWID_ can be
used to access unique row identifier.

Example:

ID

382 of 436

System Tables

Index
Information Schema

CHECK_CONSTRAINTS
COLLATIONS
COLUMNS
COLUMN_PRIVILEGES
CONSTANTS
CONSTRAINT_COLUMN_USAGE
DOMAINS
DOMAIN_CONSTRAINTS
ELEMENT_TYPES
ENUM_VALUES
FIELDS
INDEXES
INDEX_COLUMNS
INFORMATION_SCHEMA_CATALOG_NAME
IN_DOUBT
KEY_COLUMN_USAGE
LOCKS
PARAMETERS
QUERY_STATISTICS
REFERENTIAL_CONSTRAINTS
RIGHTS
ROLES
ROUTINES
SCHEMATA
SEQUENCES
SESSIONS
SESSION_STATE
SETTINGS
SYNONYMS
TABLES
TABLE_CONSTRAINTS
TABLE_PRIVILEGES

383 of 436

TRIGGERS
USERS
VIEWS

Range Table

Information Schema
The system tables and views in the schema INFORMATION_SCHEMA
contain the meta data of all tables, views, domains, and other objects in
the database as well as the current settings. This documentation
describes the default new version of INFORMATION_SCHEMA for H2 2.0.
Old TCP clients (1.4.200 and below) see the legacy version of
INFORMATION_SCHEMA, because they can't work with the new one. The
legacy version is not documented.

CHECK_CONSTRAINTS

Contains CHECK clauses of check and domain constraints.

CONSTRAINT_CATALOG CHARACTER VARYING

The catalog (database name).

CONSTRAINT_SCHEMA CHARACTER VARYING

The schema of the constraint.

CONSTRAINT_NAME CHARACTER VARYING

The name of the constraint.

CHECK_CLAUSE CHARACTER VARYING

The SQL of CHECK clause.

COLLATIONS

Contains available collations.

COLLATION_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

384 of 436

PAD_ATTRIBUTE CHARACTER VARYING

'NO PAD'.

LANGUAGE_TAG CHARACTER VARYING

The language tag.

COLUMNS

Contains information about columns of tables.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

COLUMN_NAME CHARACTER VARYING

The name of the column.

ORDINAL_POSITION INTEGER

The ordinal position (1-based).

COLUMN_DEFAULT CHARACTER VARYING

The SQL of DEFAULT expression, if any.

IS_NULLABLE CHARACTER VARYING

Whether column may contain NULL value ('YES' or 'NO').

DATA_TYPE CHARACTER VARYING

The SQL data type name.

CHARACTER_MAXIMUM_LENGTH BIGINT

The maximum length in characters for character string data types. For
binary string data types contains the same value as
CHARACTER_OCTET_LENGTH.

CHARACTER_OCTET_LENGTH BIGINT

The maximum length in bytes for binary string data types. For character
string data types contains the same value as
CHARACTER_MAXIMUM_LENGTH.

385 of 436

NUMERIC_PRECISION INTEGER

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

DATETIME_PRECISION INTEGER

The fractional seconds precision for datetime data types.

INTERVAL_TYPE CHARACTER VARYING

The data type of interval qualifier for interval data types.

INTERVAL_PRECISION INTEGER

The leading field precision for interval data types.

CHARACTER_SET_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

CHARACTER_SET_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

CHARACTER_SET_NAME CHARACTER VARYING

The 'Unicode' for character string data types.

COLLATION_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

DOMAIN_CATALOG CHARACTER VARYING

The catalog for columns with domain.

DOMAIN_SCHEMA CHARACTER VARYING

The schema of domain for columns with domain.

DOMAIN_NAME CHARACTER VARYING

The name of domain for columns with domain.

386 of 436

MAXIMUM_CARDINALITY INTEGER

The maximum cardinality for array data types.

DTD_IDENTIFIER CHARACTER VARYING

The data type identifier to read additional information from
INFORMATION_SCHEMA.ELEMENT_TYPES for array data types,
INFORMATION_SCHEMA.ENUM_VALUES for ENUM data type, and
INFORMATION_SCHEMA.FIELDS for row value data types.

IS_IDENTITY CHARACTER VARYING

Whether column is an identity column ('YES' or 'NO').

IDENTITY_GENERATION CHARACTER VARYING

Identity generation ('ALWAYS' or 'BY DEFAULT') for identity columns.

IDENTITY_START BIGINT

The initial start value for identity columns.

IDENTITY_INCREMENT BIGINT

The increment value for identity columns.

IDENTITY_MAXIMUM BIGINT

The maximum value for identity columns.

IDENTITY_MINIMUM BIGINT

The minimum value for identity columns.

IDENTITY_CYCLE CHARACTER VARYING

Whether identity values are cycled ('YES' or 'NO') for identity columns.

IS_GENERATED CHARACTER VARYING

Whether column is an generated column ('ALWAYS' or 'NEVER')

GENERATION_EXPRESSION CHARACTER VARYING

The SQL of GENERATED ALWAYS AS expression for generated columns.

DECLARED_DATA_TYPE CHARACTER VARYING

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

387 of 436

GEOMETRY_TYPE CHARACTER VARYING

The geometry type constraint, if any, for geometry data types.

GEOMETRY_SRID INTEGER

The geometry SRID (Spatial Reference Identifier) constraint, if any, for
geometry data types.

IDENTITY_BASE BIGINT

The current base value for identity columns.

IDENTITY_CACHE BIGINT

The cache size for identity columns.

COLUMN_ON_UPDATE CHARACTER VARYING

The SQL of ON UPDATE expression, if any.

IS_VISIBLE BOOLEAN

Whether column is visible (included into SELECT *).

DEFAULT_ON_NULL BOOLEAN

Whether value of DEFAULT expression is used when NULL value is
inserted.

SELECTIVITY INTEGER

The selectivity of a column (0-100), used to choose the best index.

REMARKS CHARACTER VARYING

Optional remarks.

COLUMN_PRIVILEGES

Contains information about privileges of columns. H2 doesn't have per-
column privileges, so this view actually contains privileges of their tables.

GRANTOR CHARACTER VARYING

NULL.

GRANTEE CHARACTER VARYING

The name of grantee.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

388 of 436

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

COLUMN_NAME CHARACTER VARYING

The name of the column.

PRIVILEGE_TYPE CHARACTER VARYING

'SELECT', 'INSERT', 'UPDATE', or 'DELETE'.

IS_GRANTABLE CHARACTER VARYING

Whether grantee may grant rights to this object to others ('YES' or 'NO').

CONSTANTS

Contains information about constants.

CONSTANT_CATALOG CHARACTER VARYING

The catalog (database name).

CONSTANT_SCHEMA CHARACTER VARYING

The schema of the constant.

CONSTANT_NAME CHARACTER VARYING

The name of the constant.

VALUE_DEFINITION CHARACTER VARYING

The SQL of value.

DATA_TYPE CHARACTER VARYING

The SQL data type name.

CHARACTER_MAXIMUM_LENGTH BIGINT

The maximum length in characters for character string data types. For
binary string data types contains the same value as
CHARACTER_OCTET_LENGTH.

CHARACTER_OCTET_LENGTH BIGINT

The maximum length in bytes for binary string data types. For character
string data types contains the same value as
CHARACTER_MAXIMUM_LENGTH.

CHARACTER_SET_CATALOG CHARACTER VARYING

389 of 436

The catalog (database name) for character string data types.

CHARACTER_SET_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

CHARACTER_SET_NAME CHARACTER VARYING

The 'Unicode' for character string data types.

COLLATION_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

NUMERIC_PRECISION INTEGER

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

DATETIME_PRECISION INTEGER

The fractional seconds precision for datetime data types.

INTERVAL_TYPE CHARACTER VARYING

The data type of interval qualifier for interval data types.

INTERVAL_PRECISION INTEGER

The leading field precision for interval data types.

MAXIMUM_CARDINALITY INTEGER

The maximum cardinality for array data types.

DTD_IDENTIFIER CHARACTER VARYING

The data type identifier to read additional information from
INFORMATION_SCHEMA.ELEMENT_TYPES for array data types,
INFORMATION_SCHEMA.ENUM_VALUES for ENUM data type, and
INFORMATION_SCHEMA.FIELDS for row value data types.

DECLARED_DATA_TYPE CHARACTER VARYING

390 of 436

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

GEOMETRY_TYPE CHARACTER VARYING

The geometry type constraint, if any, for geometry data types.

GEOMETRY_SRID INTEGER

The geometry SRID (Spatial Reference Identifier) constraint, if any, for
geometry data types.

REMARKS CHARACTER VARYING

Optional remarks.

CONSTRAINT_COLUMN_USAGE

Contains information about columns used in constraints.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

COLUMN_NAME CHARACTER VARYING

The name of the column.

CONSTRAINT_CATALOG CHARACTER VARYING

The catalog (database name).

CONSTRAINT_SCHEMA CHARACTER VARYING

The schema of the constraint.

CONSTRAINT_NAME CHARACTER VARYING

The name of the constraint.

391 of 436

DOMAINS

Contains information about domains.

DOMAIN_CATALOG CHARACTER VARYING

The catalog (database name).

DOMAIN_SCHEMA CHARACTER VARYING

The schema of domain.

DOMAIN_NAME CHARACTER VARYING

The name of domain.

DATA_TYPE CHARACTER VARYING

The SQL data type name.

CHARACTER_MAXIMUM_LENGTH BIGINT

The maximum length in characters for character string data types. For
binary string data types contains the same value as
CHARACTER_OCTET_LENGTH.

CHARACTER_OCTET_LENGTH BIGINT

The maximum length in bytes for binary string data types. For character
string data types contains the same value as
CHARACTER_MAXIMUM_LENGTH.

CHARACTER_SET_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

CHARACTER_SET_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

CHARACTER_SET_NAME CHARACTER VARYING

The 'Unicode' for character string data types.

COLLATION_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

NUMERIC_PRECISION INTEGER

392 of 436

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

DATETIME_PRECISION INTEGER

The fractional seconds precision for datetime data types.

INTERVAL_TYPE CHARACTER VARYING

The data type of interval qualifier for interval data types.

INTERVAL_PRECISION INTEGER

The leading field precision for interval data types.

DOMAIN_DEFAULT CHARACTER VARYING

The SQL of DEFAULT expression, if any.

MAXIMUM_CARDINALITY INTEGER

The maximum cardinality for array data types.

DTD_IDENTIFIER CHARACTER VARYING

The data type identifier to read additional information from
INFORMATION_SCHEMA.ELEMENT_TYPES for array data types,
INFORMATION_SCHEMA.ENUM_VALUES for ENUM data type, and
INFORMATION_SCHEMA.FIELDS for row value data types.

DECLARED_DATA_TYPE CHARACTER VARYING

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

GEOMETRY_TYPE CHARACTER VARYING

The geometry type constraint, if any, for geometry data types.

GEOMETRY_SRID INTEGER

The geometry SRID (Spatial Reference Identifier) constraint, if any, for
geometry data types.

393 of 436

DOMAIN_ON_UPDATE CHARACTER VARYING

The SQL of ON UPDATE expression, if any.

PARENT_DOMAIN_CATALOG CHARACTER VARYING

The catalog (database name) for domains with parent domain.

PARENT_DOMAIN_SCHEMA CHARACTER VARYING

The schema of parent domain for domains with parent domain.

PARENT_DOMAIN_NAME CHARACTER VARYING

The name of parent domain for domains with parent domain.

REMARKS CHARACTER VARYING

Optional remarks.

DOMAIN_CONSTRAINTS

Contains basic information about domain constraints. See also
INFORMATION_SCHEMA.CHECK_CONSTRAINTS.

CONSTRAINT_CATALOG CHARACTER VARYING

The catalog (database name).

CONSTRAINT_SCHEMA CHARACTER VARYING

The schema of the constraint.

CONSTRAINT_NAME CHARACTER VARYING

The name of the constraint.

DOMAIN_CATALOG CHARACTER VARYING

The catalog (database name).

DOMAIN_SCHEMA CHARACTER VARYING

The schema of domain.

DOMAIN_NAME CHARACTER VARYING

The name of domain.

IS_DEFERRABLE CHARACTER VARYING

'NO'.

INITIALLY_DEFERRED CHARACTER VARYING

'NO'.

394 of 436

REMARKS CHARACTER VARYING

Optional remarks.

ELEMENT_TYPES

Contains information about types of array elements.

OBJECT_CATALOG CHARACTER VARYING

The catalog (database name).

OBJECT_SCHEMA CHARACTER VARYING

The schema of the object.

OBJECT_NAME CHARACTER VARYING

The name of the object.

OBJECT_TYPE CHARACTER VARYING

The TYPE of the object ('CONSTANT', 'DOMAIN', 'TABLE', or 'ROUTINE').

COLLECTION_TYPE_IDENTIFIER CHARACTER VARYING

The DTD_IDENTIFIER value of the object.

DATA_TYPE CHARACTER VARYING

The SQL data type name.

CHARACTER_MAXIMUM_LENGTH BIGINT

The maximum length in characters for character string data types. For
binary string data types contains the same value as
CHARACTER_OCTET_LENGTH.

CHARACTER_OCTET_LENGTH BIGINT

The maximum length in bytes for binary string data types. For character
string data types contains the same value as
CHARACTER_MAXIMUM_LENGTH.

CHARACTER_SET_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

CHARACTER_SET_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

CHARACTER_SET_NAME CHARACTER VARYING

The 'Unicode' for character string data types.

395 of 436

COLLATION_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

NUMERIC_PRECISION INTEGER

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

DATETIME_PRECISION INTEGER

The fractional seconds precision for datetime data types.

INTERVAL_TYPE CHARACTER VARYING

The data type of interval qualifier for interval data types.

INTERVAL_PRECISION INTEGER

The leading field precision for interval data types.

MAXIMUM_CARDINALITY INTEGER

The maximum cardinality for array data types.

DTD_IDENTIFIER CHARACTER VARYING

The data type identifier to read additional information from
INFORMATION_SCHEMA.ELEMENT_TYPES for array data types,
INFORMATION_SCHEMA.ENUM_VALUES for ENUM data type, and
INFORMATION_SCHEMA.FIELDS for row value data types.

DECLARED_DATA_TYPE CHARACTER VARYING

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

396 of 436

GEOMETRY_TYPE CHARACTER VARYING

The geometry type constraint, if any, for geometry data types.

GEOMETRY_SRID INTEGER

The geometry SRID (Spatial Reference Identifier) constraint, if any, for
geometry data types.

ENUM_VALUES

Contains information about enum values.

OBJECT_CATALOG CHARACTER VARYING

The catalog (database name).

OBJECT_SCHEMA CHARACTER VARYING

The schema of the object.

OBJECT_NAME CHARACTER VARYING

The name of the object.

OBJECT_TYPE CHARACTER VARYING

The TYPE of the object ('CONSTANT', 'DOMAIN', 'TABLE', or 'ROUTINE').

ENUM_IDENTIFIER CHARACTER VARYING

The DTD_IDENTIFIER value of the object.

VALUE_NAME CHARACTER VARYING

The name of enum value.

VALUE_ORDINAL CHARACTER VARYING

The ordinal of enum value.

FIELDS

Contains information about fields of row values.

OBJECT_CATALOG CHARACTER VARYING

The catalog (database name).

OBJECT_SCHEMA CHARACTER VARYING

The schema of the object.

OBJECT_NAME CHARACTER VARYING

The name of the object.

397 of 436

OBJECT_TYPE CHARACTER VARYING

The TYPE of the object ('CONSTANT', 'DOMAIN', 'TABLE', or 'ROUTINE').

ROW_IDENTIFIER CHARACTER VARYING

The DTD_IDENTIFIER value of the object.

FIELD_NAME CHARACTER VARYING

The name of the field of the row value.

ORDINAL_POSITION INTEGER

The ordinal position (1-based).

DATA_TYPE CHARACTER VARYING

The SQL data type name.

CHARACTER_MAXIMUM_LENGTH BIGINT

The maximum length in characters for character string data types. For
binary string data types contains the same value as
CHARACTER_OCTET_LENGTH.

CHARACTER_OCTET_LENGTH BIGINT

The maximum length in bytes for binary string data types. For character
string data types contains the same value as
CHARACTER_MAXIMUM_LENGTH.

CHARACTER_SET_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

CHARACTER_SET_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

CHARACTER_SET_NAME CHARACTER VARYING

The 'Unicode' for character string data types.

COLLATION_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

NUMERIC_PRECISION INTEGER

398 of 436

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

DATETIME_PRECISION INTEGER

The fractional seconds precision for datetime data types.

INTERVAL_TYPE CHARACTER VARYING

The data type of interval qualifier for interval data types.

INTERVAL_PRECISION INTEGER

The leading field precision for interval data types.

MAXIMUM_CARDINALITY INTEGER

The maximum cardinality for array data types.

DTD_IDENTIFIER CHARACTER VARYING

The data type identifier to read additional information from
INFORMATION_SCHEMA.ELEMENT_TYPES for array data types,
INFORMATION_SCHEMA.ENUM_VALUES for ENUM data type, and
INFORMATION_SCHEMA.FIELDS for row value data types.

DECLARED_DATA_TYPE CHARACTER VARYING

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

GEOMETRY_TYPE CHARACTER VARYING

The geometry type constraint, if any, for geometry data types.

GEOMETRY_SRID INTEGER

The geometry SRID (Spatial Reference Identifier) constraint, if any, for
geometry data types.

INDEXES

Contains information about indexes.

399 of 436

INDEX_CATALOG CHARACTER VARYING

The catalog (database name).

INDEX_SCHEMA CHARACTER VARYING

The schema of the index.

INDEX_NAME CHARACTER VARYING

The name of the index.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

INDEX_TYPE_NAME CHARACTER VARYING

The type of the index ('PRIMARY KEY', 'UNIQUE INDEX', 'SPATIAL INDEX',
etc.)

NULLS_DISTINCT CHARACTER VARYING

'YES' for unique indexes with distinct null values, 'NO' for unique indexes
with not distinct null values, 'ALL' for multi-column unique indexes where
only rows with null values in all unique columns are distinct, NULL for
other types of indexes.

IS_GENERATED BOOLEAN

Whether index is generated by a constraint and belongs to it.

REMARKS CHARACTER VARYING

Optional remarks.

INDEX_CLASS CHARACTER VARYING

The Java class name of index implementation.

INDEX_COLUMNS

Contains information about columns used in indexes.

INDEX_CATALOG CHARACTER VARYING

The catalog (database name).

400 of 436

INDEX_SCHEMA CHARACTER VARYING

The schema of the index.

INDEX_NAME CHARACTER VARYING

The name of the index.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

COLUMN_NAME CHARACTER VARYING

The name of the column.

ORDINAL_POSITION INTEGER

The ordinal position (1-based).

ORDERING_SPECIFICATION CHARACTER VARYING

'ASC' or 'DESC'.

NULL_ORDERING CHARACTER VARYING

'FIRST', 'LAST', or NULL.

IS_UNIQUE BOOLEAN

Whether this column is a part of unique column list of a unique index
(TRUE or FALSE).

INFORMATION_SCHEMA_CATALOG_NAME

Contains a single row with the name of catalog (database name).

CATALOG_NAME CHARACTER VARYING

The catalog (database name).

IN_DOUBT

Contains information about prepared transactions.

TRANSACTION_NAME CHARACTER VARYING

The name of prepared transaction.

401 of 436

TRANSACTION_STATE CHARACTER VARYING

The state of prepared transaction ('IN_DOUBT', 'COMMIT', or 'ROLLBACK').

KEY_COLUMN_USAGE

Contains information about columns used by primary key, unique, or
referential constraint.

CONSTRAINT_CATALOG CHARACTER VARYING

The catalog (database name).

CONSTRAINT_SCHEMA CHARACTER VARYING

The schema of the constraint.

CONSTRAINT_NAME CHARACTER VARYING

The name of the constraint.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

COLUMN_NAME CHARACTER VARYING

The name of the column.

ORDINAL_POSITION INTEGER

The ordinal position (1-based).

POSITION_IN_UNIQUE_CONSTRAINT INTEGER

The ordinal position in the referenced unique constraint (1-based).

LOCKS

Contains information about tables locked by sessions.

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

402 of 436

SESSION_ID INTEGER

The identifier of the session.

LOCK_TYPE CHARACTER VARYING

'READ' or 'WRITE'.

PARAMETERS

Contains information about parameters of routines.

SPECIFIC_CATALOG CHARACTER VARYING

The catalog (database name).

SPECIFIC_SCHEMA CHARACTER VARYING

The schema of the overloaded version of routine.

SPECIFIC_NAME CHARACTER VARYING

The name of the overloaded version of routine.

ORDINAL_POSITION INTEGER

The ordinal position (1-based).

PARAMETER_MODE CHARACTER VARYING

'IN'.

IS_RESULT CHARACTER VARYING

'NO'.

AS_LOCATOR CHARACTER VARYING

'YES' for LOBs, 'NO' for others.

PARAMETER_NAME CHARACTER VARYING

The name of the parameter.

DATA_TYPE CHARACTER VARYING

The SQL data type name.

CHARACTER_MAXIMUM_LENGTH BIGINT

The maximum length in characters for character string data types. For
binary string data types contains the same value as
CHARACTER_OCTET_LENGTH.

CHARACTER_OCTET_LENGTH BIGINT

The maximum length in bytes for binary string data types. For character

403 of 436

string data types contains the same value as
CHARACTER_MAXIMUM_LENGTH.

CHARACTER_SET_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

CHARACTER_SET_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

CHARACTER_SET_NAME CHARACTER VARYING

The 'Unicode' for character string data types.

COLLATION_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

NUMERIC_PRECISION INTEGER

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

DATETIME_PRECISION INTEGER

The fractional seconds precision for datetime data types.

INTERVAL_TYPE CHARACTER VARYING

The data type of interval qualifier for interval data types.

INTERVAL_PRECISION INTEGER

The leading field precision for interval data types.

MAXIMUM_CARDINALITY INTEGER

The maximum cardinality for array data types.

DTD_IDENTIFIER CHARACTER VARYING

The data type identifier to read additional information from

404 of 436

INFORMATION_SCHEMA.ELEMENT_TYPES for array data types,
INFORMATION_SCHEMA.ENUM_VALUES for ENUM data type, and
INFORMATION_SCHEMA.FIELDS for row value data types.

DECLARED_DATA_TYPE CHARACTER VARYING

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

PARAMETER_DEFAULT CHARACTER VARYING

NULL.

GEOMETRY_TYPE CHARACTER VARYING

The geometry type constraint, if any, for geometry data types.

GEOMETRY_SRID INTEGER

The geometry SRID (Spatial Reference Identifier) constraint, if any, for
geometry data types.

QUERY_STATISTICS

Contains statistics of queries when query statistics gathering is enabled.

SQL_STATEMENT CHARACTER VARYING

The SQL statement.

EXECUTION_COUNT INTEGER

The execution count.

MIN_EXECUTION_TIME DOUBLE PRECISION

The minimum execution time in milliseconds.

MAX_EXECUTION_TIME DOUBLE PRECISION

The maximum execution time in milliseconds.

CUMULATIVE_EXECUTION_TIME DOUBLE PRECISION

The total execution time in milliseconds.

AVERAGE_EXECUTION_TIME DOUBLE PRECISION

The average execution time in milliseconds.

405 of 436

STD_DEV_EXECUTION_TIME DOUBLE PRECISION

The standard deviation of execution time in milliseconds.

MIN_ROW_COUNT BIGINT

The minimum number of rows.

MAX_ROW_COUNT BIGINT

The maximum number of rows.

CUMULATIVE_ROW_COUNT BIGINT

The total number of rows.

AVERAGE_ROW_COUNT DOUBLE PRECISION

The average number of rows.

STD_DEV_ROW_COUNT DOUBLE PRECISION

The standard deviation of number of rows.

REFERENTIAL_CONSTRAINTS

Contains additional information about referential constraints.

CONSTRAINT_CATALOG CHARACTER VARYING

The catalog (database name).

CONSTRAINT_SCHEMA CHARACTER VARYING

The schema of the constraint.

CONSTRAINT_NAME CHARACTER VARYING

The name of the constraint.

UNIQUE_CONSTRAINT_CATALOG CHARACTER VARYING

The catalog (database name).

UNIQUE_CONSTRAINT_SCHEMA CHARACTER VARYING

The schema of referenced unique constraint.

UNIQUE_CONSTRAINT_NAME CHARACTER VARYING

The name of referenced unique constraint.

MATCH_OPTION CHARACTER VARYING

'NONE'.

UPDATE_RULE CHARACTER VARYING

406 of 436

The rule for UPDATE in referenced table ('RESTRICT', 'CASCADE', 'SET
DEFAULT', or 'SET NULL').

DELETE_RULE CHARACTER VARYING

The rule for DELETE in referenced table ('RESTRICT', 'CASCADE', 'SET
DEFAULT', or 'SET NULL').

RIGHTS

Contains information about granted rights and roles.

GRANTEE CHARACTER VARYING

The name of grantee.

GRANTEETYPE CHARACTER VARYING

'USER' if grantee is a user, 'ROLE' if grantee is a role.

GRANTEDROLE CHARACTER VARYING

The name of the granted role for role grants.

RIGHTS CHARACTER VARYING

The set of rights ('SELECT', 'DELETE', 'INSERT', 'UPDATE', or 'ALTER ANY
SCHEMA' separated with ', ') for table grants.

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

ROLES

Contains information about roles.

ROLE_NAME CHARACTER VARYING

The name of the role.

REMARKS CHARACTER VARYING

Optional remarks.

ROUTINES

Contains information about user-defined routines, including aggregate
functions.

407 of 436

SPECIFIC_CATALOG CHARACTER VARYING

The catalog (database name).

SPECIFIC_SCHEMA CHARACTER VARYING

The schema of the overloaded version of routine.

SPECIFIC_NAME CHARACTER VARYING

The name of the overloaded version of routine.

ROUTINE_CATALOG CHARACTER VARYING

The catalog (database name).

ROUTINE_SCHEMA CHARACTER VARYING

The schema of the routine.

ROUTINE_NAME CHARACTER VARYING

The name of the routine.

ROUTINE_TYPE CHARACTER VARYING

'PROCEDURE', 'FUNCTION', or 'AGGREGATE'.

DATA_TYPE CHARACTER VARYING

The SQL data type name.

CHARACTER_MAXIMUM_LENGTH BIGINT

The maximum length in characters for character string data types. For
binary string data types contains the same value as
CHARACTER_OCTET_LENGTH.

CHARACTER_OCTET_LENGTH BIGINT

The maximum length in bytes for binary string data types. For character
string data types contains the same value as
CHARACTER_MAXIMUM_LENGTH.

CHARACTER_SET_CATALOG CHARACTER VARYING

The catalog (database name) for character string data types.

CHARACTER_SET_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

CHARACTER_SET_NAME CHARACTER VARYING

The 'Unicode' for character string data types.

COLLATION_CATALOG CHARACTER VARYING

408 of 436

The catalog (database name) for character string data types.

COLLATION_SCHEMA CHARACTER VARYING

The name of public schema for character string data types.

COLLATION_NAME CHARACTER VARYING

The name of collation for character string data types.

NUMERIC_PRECISION INTEGER

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

DATETIME_PRECISION INTEGER

The fractional seconds precision for datetime data types.

INTERVAL_TYPE CHARACTER VARYING

The data type of interval qualifier for interval data types.

INTERVAL_PRECISION INTEGER

The leading field precision for interval data types.

MAXIMUM_CARDINALITY INTEGER

The maximum cardinality for array data types.

DTD_IDENTIFIER CHARACTER VARYING

The data type identifier to read additional information from
INFORMATION_SCHEMA.ELEMENT_TYPES for array data types,
INFORMATION_SCHEMA.ENUM_VALUES for ENUM data type, and
INFORMATION_SCHEMA.FIELDS for row value data types.

ROUTINE_BODY CHARACTER VARYING

'EXTERNAL'.

ROUTINE_DEFINITION CHARACTER VARYING

Source code or NULL if not applicable or user doesn't have ADMIN
privileges.

EXTERNAL_NAME CHARACTER VARYING

The name of the class or method.

409 of 436

EXTERNAL_LANGUAGE CHARACTER VARYING

'JAVA'.

PARAMETER_STYLE CHARACTER VARYING

'GENERAL'.

IS_DETERMINISTIC CHARACTER VARYING

Whether routine is deterministic ('YES' or 'NO').

DECLARED_DATA_TYPE CHARACTER VARYING

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

GEOMETRY_TYPE CHARACTER VARYING

The geometry type constraint, if any, for geometry data types.

GEOMETRY_SRID INTEGER

The geometry SRID (Spatial Reference Identifier) constraint, if any, for
geometry data types.

REMARKS CHARACTER VARYING

Optional remarks.

SCHEMATA

Contains information about schemas.

CATALOG_NAME CHARACTER VARYING

The catalog (database name).

SCHEMA_NAME CHARACTER VARYING

The schema name.

SCHEMA_OWNER CHARACTER VARYING

The name of schema owner.

DEFAULT_CHARACTER_SET_CATALOG CHARACTER VARYING

The catalog (database name).

DEFAULT_CHARACTER_SET_SCHEMA CHARACTER VARYING
410 of 436

The name of public schema.

DEFAULT_CHARACTER_SET_NAME CHARACTER VARYING

'Unicode'.

SQL_PATH CHARACTER VARYING

NULL.

DEFAULT_COLLATION_NAME CHARACTER VARYING

The name of database collation.

REMARKS CHARACTER VARYING

Optional remarks.

SEQUENCES

Contains information about sequences.

SEQUENCE_CATALOG CHARACTER VARYING

The catalog (database name).

SEQUENCE_SCHEMA CHARACTER VARYING

The schema of the sequence.

SEQUENCE_NAME CHARACTER VARYING

The name of the sequence.

DATA_TYPE CHARACTER VARYING

The SQL data type name.

NUMERIC_PRECISION INTEGER

The precision for numeric data types.

NUMERIC_PRECISION_RADIX INTEGER

The radix of precision (2 or 10) for numeric data types.

NUMERIC_SCALE INTEGER

The scale for numeric data types.

START_VALUE BIGINT

The initial start value.

MINIMUM_VALUE BIGINT

The minimum value.

411 of 436

MAXIMUM_VALUE BIGINT

The maximum value.

INCREMENT BIGINT

The increment value.

CYCLE_OPTION CHARACTER VARYING

Whether values are cycled ('YES' or 'NO').

DECLARED_DATA_TYPE CHARACTER VARYING

The declared SQL data type name for numeric data types.

DECLARED_NUMERIC_PRECISION INTEGER

The declared precision, if any, for numeric data types.

DECLARED_NUMERIC_SCALE INTEGER

The declared scale, if any, for numeric data types.

BASE_VALUE BIGINT

The current base value.

CACHE BIGINT

The cache size.

REMARKS CHARACTER VARYING

Optional remarks.

SESSIONS

Contains information about sessions. Only users with ADMIN privileges can
see all sessions, other users can see only own session.

SESSION_ID INTEGER

The identifier of the session.

USER_NAME CHARACTER VARYING

The name of the user.

SERVER CHARACTER VARYING

The name of the server used by remote connection.

CLIENT_ADDR CHARACTER VARYING

The client address and port used by remote connection.

412 of 436

CLIENT_INFO CHARACTER VARYING

Additional client information provided by remote connection.

SESSION_START TIMESTAMP(9) WITH TIME ZONE

When this session was started.

ISOLATION_LEVEL CHARACTER VARYING

The isolation level of the session ('READ UNCOMMITTED', 'READ
COMMITTED', 'REPEATABLE READ', 'SNAPSHOT', or 'SERIALIZABLE').

EXECUTING_STATEMENT CHARACTER VARYING

The currently executing statement, if any.

EXECUTING_STATEMENT_START TIMESTAMP(9) WITH TIME ZONE

When the current command was started, if any.

CONTAINS_UNCOMMITTED BOOLEAN

Whether the session contains any uncommitted changes.

SESSION_STATE CHARACTER VARYING

The state of the session ('RUNNING', 'SLEEP', etc.)

BLOCKER_ID INTEGER

The identifier or blocking session, if any.

SLEEP_SINCE TIMESTAMP(9) WITH TIME ZONE

When the last command was finished if session is sleeping.

SESSION_STATE

Contains the state of the current session.

STATE_KEY CHARACTER VARYING

The key.

STATE_COMMAND CHARACTER VARYING

The SQL command that can be used to restore the state.

SETTINGS

Contains values of various settings.

SETTING_NAME CHARACTER VARYING

The name of the setting.

413 of 436

SETTING_VALUE CHARACTER VARYING

The value of the setting.

SYNONYMS

Contains information about table synonyms.

SYNONYM_CATALOG CHARACTER VARYING

The catalog (database name).

SYNONYM_SCHEMA CHARACTER VARYING

The schema of the synonym.

SYNONYM_NAME CHARACTER VARYING

The name of the synonym.

SYNONYM_FOR CHARACTER VARYING

The name of the referenced table.

SYNONYM_FOR_SCHEMA CHARACTER VARYING

The name of the referenced schema.

TYPE_NAME CHARACTER VARYING

'SYNONYM'.

STATUS CHARACTER VARYING

'VALID'.

REMARKS CHARACTER VARYING

Optional remarks.

TABLES

Contains information about tables. See also
INFORMATION_SCHEMA.COLUMNS.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

414 of 436

TABLE_TYPE CHARACTER VARYING

'BASE TABLE', 'VIEW', 'GLOBAL TEMPORARY', or 'LOCAL TEMPORARY'.

IS_INSERTABLE_INTO CHARACTER VARYING

Whether the table is insertable ('YES' or 'NO').

COMMIT_ACTION CHARACTER VARYING

'DELETE', 'DROP', or 'PRESERVE' for temporary tables.

STORAGE_TYPE CHARACTER VARYING

'CACHED' for regular persisted tables, 'MEMORY' for in-memory tables or
persisted tables with in-memory indexes, 'GLOBAL TEMPORARY' or
'LOCAL TEMPORARY' for temporary tables, 'EXTERNAL' for tables with
external table engines, or 'TABLE LINK' for linked tables.

REMARKS CHARACTER VARYING

Optional remarks.

LAST_MODIFICATION BIGINT

The sequence number of the last modification, if applicable.

TABLE_CLASS CHARACTER VARYING

The Java class name of implementation.

ROW_COUNT_ESTIMATE BIGINT

The approximate number of rows if known or some default value if
unknown. For regular tables contains the total number of rows including
the uncommitted rows.

TABLE_CONSTRAINTS

Contains basic information about table constraints (check, primary key,
unique, and referential).

CONSTRAINT_CATALOG CHARACTER VARYING

The catalog (database name).

CONSTRAINT_SCHEMA CHARACTER VARYING

The schema of the constraint.

CONSTRAINT_NAME CHARACTER VARYING

The name of the constraint.

CONSTRAINT_TYPE CHARACTER VARYING

415 of 436

'CHECK', 'PRIMARY KEY', 'UNIQUE', or 'REFERENTIAL'.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

IS_DEFERRABLE CHARACTER VARYING

'NO'.

INITIALLY_DEFERRED CHARACTER VARYING

'NO'.

ENFORCED CHARACTER VARYING

'YES' for non-referential constants. 'YES' for referential constants when
checks for referential integrity are enabled for the both referenced and
referencing tables and 'NO' when they are disabled.

NULLS_DISTINCT CHARACTER VARYING

'YES' for unique constraints with distinct null values, 'NO' for unique
constraints with not distinct null values, 'ALL' for multi-column unique
constraints where only rows with null values in all unique columns are
distinct, NULL for other types of constraints.

INDEX_CATALOG CHARACTER VARYING

The catalog (database name).

INDEX_SCHEMA CHARACTER VARYING

The schema of the index.

INDEX_NAME CHARACTER VARYING

The name of the index.

REMARKS CHARACTER VARYING

Optional remarks.

TABLE_PRIVILEGES

Contains information about privileges of tables. See
INFORMATION_SCHEMA.CHECK_CONSTRAINTS,
INFORMATION_SCHEMA.KEY_COLUMN_USAGE, and

416 of 436

INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS for additional
information.

GRANTOR CHARACTER VARYING

NULL.

GRANTEE CHARACTER VARYING

The name of grantee.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

PRIVILEGE_TYPE CHARACTER VARYING

'SELECT', 'INSERT', 'UPDATE', or 'DELETE'.

IS_GRANTABLE CHARACTER VARYING

Whether grantee may grant rights to this object to others ('YES' or 'NO').

WITH_HIERARCHY CHARACTER VARYING

'NO'.

TRIGGERS

Contains information about triggers.

TRIGGER_CATALOG CHARACTER VARYING

The catalog (database name).

TRIGGER_SCHEMA CHARACTER VARYING

The schema of the trigger.

TRIGGER_NAME CHARACTER VARYING

The name of the trigger.

EVENT_MANIPULATION CHARACTER VARYING

'INSERT', 'UPDATE', 'DELETE', or 'SELECT'.

EVENT_OBJECT_CATALOG CHARACTER VARYING

417 of 436

The catalog (database name).

EVENT_OBJECT_SCHEMA CHARACTER VARYING

The schema of the table.

EVENT_OBJECT_TABLE CHARACTER VARYING

The name of the table.

ACTION_ORIENTATION CHARACTER VARYING

'ROW' or 'STATEMENT'.

ACTION_TIMING CHARACTER VARYING

'BEFORE', 'AFTER', or 'INSTEAD OF'.

IS_ROLLBACK BOOLEAN

Whether this trigger is executed on rollback.

JAVA_CLASS CHARACTER VARYING

The Java class name.

QUEUE_SIZE INTEGER

The size of the queue (is not actually used).

NO_WAIT BOOLEAN

Whether trigger is defined with NO WAIT clause (is not actually used).

REMARKS CHARACTER VARYING

Optional remarks.

USERS

Contains information about users. Only users with ADMIN privileges can
see all users, other users can see only themselves.

USER_NAME CHARACTER VARYING

The name of the user.

IS_ADMIN BOOLEAN

Whether user has ADMIN privileges.

REMARKS CHARACTER VARYING

Optional remarks.

418 of 436

VIEWS

Contains additional information about views. See
INFORMATION_SCHEMA.TABLES for basic information.

TABLE_CATALOG CHARACTER VARYING

The catalog (database name).

TABLE_SCHEMA CHARACTER VARYING

The schema of the table.

TABLE_NAME CHARACTER VARYING

The name of the table.

VIEW_DEFINITION CHARACTER VARYING

The query SQL, if applicable.

CHECK_OPTION CHARACTER VARYING

'NONE'.

IS_UPDATABLE CHARACTER VARYING

'NO'.

INSERTABLE_INTO CHARACTER VARYING

'NO'.

IS_TRIGGER_UPDATABLE CHARACTER VARYING

Whether the view has INSTEAD OF trigger for UPDATE ('YES' or 'NO').

IS_TRIGGER_DELETABLE CHARACTER VARYING

Whether the view has INSTEAD OF trigger for DELETE ('YES' or 'NO').

IS_TRIGGER_INSERTABLE_INTO CHARACTER VARYING

Whether the view has INSTEAD OF trigger for INSERT ('YES' or 'NO').

STATUS CHARACTER VARYING

'VALID' or 'INVALID'.

REMARKS CHARACTER VARYING

Optional remarks.

Range Table
The range table is a dynamic system table that contains all values from a
start to an end value. Non-zero step value may be also specified, default is

419 of 436

1. Start value, end value, and optional step value are converted to BIGINT
data type. The table contains one column called X. If start value is greater
than end value and step is positive the result is empty. If start value is
less than end value and step is negative the result is empty too. If start
value is equal to end value the result contains only start value. Start
value, start value plus step, start value plus step multiplied by two and so
on are included in result. If step is positive the last value is less than or
equal to the specified end value. If step in negative the last value is
greater than or equal to the specified end value. The table is used as
follows:

Examples:

SELECT X FROM SYSTEM_RANGE(1, 10);
-- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
SELECT X FROM SYSTEM_RANGE(1, 10, 2);
-- 1, 3, 5, 7, 9
SELECT X FROM SYSTEM_RANGE(1, 10, -1);
-- No rows
SELECT X FROM SYSTEM_RANGE(10, 2, -2);
-- 10, 8, 6, 4, 2

420 of 436

Build
Portability
Environment
Building the Software
Using Maven 2
Native Image
Using Eclipse
Translating
Submitting Source Code Changes
Reporting Problems or Requests
Automated Build
Generating Railroad Diagrams

Portability
This database is written in Java and therefore works on many platforms.

Environment
To run this database, a Java Runtime Environment (JRE) version 11 or
higher is required. It it also possible to compile a standalone executable
with experimental native image build.

Building the Software
You need to install a JDK, for example the Oracle JDK version 11. Ensure
that Java binary directory is included in the PATH environment variable,
and that the environment variable JAVA_HOME points to your Java
installation. On the command line, go to the directory h2 and execute the
following command:

build -?

For Linux and OS X, use ./build.sh instead of build.

You will get a list of targets. If you want to build the jar file, execute
(Windows):

build jar

To run the build tool in shell mode, use the command line option -:
421 of 436

./build.sh -

Using Apache Lucene

Apache Lucene 9.7.0 is used for testing.

Using Maven 2

Using a Central Repository

You can include the database in your Maven 2 project as a dependency.
Example:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>2.3.230</version>
</dependency>

New versions of this database are first uploaded to
http://hsql.sourceforge.net/m2-repo/ and then automatically synchronized
with the main Maven repository; however after a new release it may take
a few hours before they are available there.

Maven Plugin to Start and Stop the TCP Server

A Maven plugin to start and stop the H2 TCP server is available from Laird
Nelson at GitHub. To start the H2 server, use:

mvn com.edugility.h2-maven-plugin:1.0-SNAPSHOT:spawn

To stop the H2 server, use:

mvn com.edugility.h2-maven-plugin:1.0-SNAPSHOT:stop

Using Snapshot Version

To build a h2-*-SNAPSHOT.jar file and upload it the to the local Maven 2
repository, execute the following command:

build mavenInstallLocal

Afterwards, you can include the database in your Maven 2 project as a
dependency:

422 of 436

https://github.com/ljnelson/h2-maven-plugin
https://github.com/ljnelson/h2-maven-plugin
https://repo1.maven.org/maven2/com/h2database/h2/

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.0-SNAPSHOT</version>
</dependency>

Native Image
There is an experimental support for compilation of native executables
with native-image tool. To build an executable with H2 install GraalVM and
use its updater to get the native-image tool:

gu install native-image

This tool can be used for compilation of native executables:

native-image --no-fallback -jar h2-VERSION.jar h2

Known limitations:

• If --no-fallback parameter was specified, system tray icon may not
appear even if -Djava.awt.headless=false parameter of native-image
tool was used, because native-image doesn't add all necessary
configuration for working GUI.

• If --no-fallback parameter was specified, user-defined functions and
triggers need an additional configuration.

• JAVA_OBJECT data type wasn't tested and may not work at all.
• Third-party loggers, ICU4J collators, and fulltext search weren't

tested.

Using Eclipse
To create an Eclipse project for H2, use the following steps:

• Install Git and Eclipse.
• Get the H2 source code from Github:

git clone https://github.com/h2database/h2database
• Download all dependencies:

build.bat download(Windows)
./build.sh download(otherwise)

• In Eclipse, create a new Java project from existing source code: File,
New, Project, Java Project, Create project from existing source.

423 of 436

https://www.eclipse.org/

• Select the h2 folder, click Next and Finish.
• To resolve com.sun.javadoc import statements, you may need to

manually add the file <java.home>/../lib/tools.jar to the build path.

Translating
The translation of this software is split into the following parts:

• H2 Console: src/main/org/h2/server/web/res/_text_*.prop
• Error messages: src/main/org/h2/res/_messages_*.prop

To translate the H2 Console, start it and select Preferences / Translate.
After you are done, send the translated *.prop file to the Google Group.
The web site is currently translated using Google.

Submitting Source Code Changes
If you'd like to contribute bug fixes or new features, please consider the
following guidelines to simplify merging them:

• Only use Java 11 features (do not use Java 17/21/etc) (see
Environment).

• Follow the coding style used in the project, and use Checkstyle (see
above) to verify. For example, do not use tabs (use spaces instead).
The checkstyle configuration is in src/installer/checkstyle.xml.

• A template of the Eclipse settings are in
src/installer/eclipse.settings/*. If you want to use them, you need to
copy them to the .settings directory. The formatting options
(eclipseCodeStyle) are also included.

• Please provide test cases and integrate them into the test suite. For
Java level tests, see src/test/org/h2/test/TestAll.java. For SQL level
tests, see SQL files in src/test/org/h2/test/scripts.

• The test cases should cover at least 90% of the changed and new
code; use a code coverage tool to verify that (see above). or use the
build target coverage.

• Verify that you did not break other features: run the test cases by
executing build test.

• Provide end user documentation if required (src/docsrc/html/*).
• Document grammar changes in src/main/org/h2/res/help.csv
• Provide a change log entry (src/docsrc/html/changelog.html).

424 of 436

• Verify the spelling using build spellcheck. If required add the new
words to src/tools/org/h2/build/doc/dictionary.txt.

• Run src/installer/buildRelease to find and fix formatting errors.
• Verify the formatting using build docs and build javadoc.
• Submit changes using GitHub's "pull requests". You'll require a free

GitHub account. If you are not familiar with pull requests, please read
GitHub's Using pull requests page.

For legal reasons, patches need to be public in the form of an issue report
or attachment or in the form of an email to the group. Significant
contributions need to include the following statement:

"I wrote the code, it's mine, and I'm contributing it to H2 for distribution
multiple-licensed under the MPL 2.0, and the EPL 1.0
(https://h2database.com/html/license.html)."

Reporting Problems or Requests
Please consider the following checklist if you have a question, want to
report a problem, or if you have a feature request:

• For bug reports, please provide a short, self contained, correct
(compilable), example of the problem.

• Feature requests are always welcome, even if the feature is already
on the issue tracker you can comment it. If you urgently need a
feature, consider providing a patch.

• Before posting problems, check the FAQ and do a Google search.
• When got an unexpected exception, please try the Error Analyzer

tool. If this doesn't help, please report the problem, including the
complete error message and stack trace, and the root cause stack
trace(s).

• When sending source code, please use a public web clipboard such
as Pastebin or Mystic Paste to avoid formatting problems. Please
keep test cases as simple and short as possible, but so that the
problem can still be reproduced. As a template, use: HelloWorld.java.
Method that simply call other methods should be avoided, as well as
unnecessary exception handling. Please use the JDBC API and no
external tools or libraries. The test should include all required
initialization code, and should be started with the main method.

• For large attachments, use a public storage such as Google Drive.

425 of 436

https://www.google.com/drive/
https://github.com/h2database/h2database/tree/master/h2/src/test/org/h2/samples/HelloWorld.java
https://mysticpaste.com/new
https://pastebin.com/
https://h2database.com/html/sourceError.html
https://h2database.com/html/sourceError.html
http://google.com/
https://github.com/h2database/h2database/issues?q=is%3Aissue+is%3Aopen+label%3Aenhancement
http://sscce.org/
http://sscce.org/
https://groups.google.com/g/h2-database
https://github.com/h2database/h2database/issues
https://github.com/h2database/h2database/issues
https://help.github.com/articles/using-pull-requests/
https://github.com/

• Google Group versus issue tracking: Use the Google Group for
questions or if you are not sure it's a bug. If you are sure it's a bug,
you can create an issue, but you don't need to (sending an email to
the group is enough). Please note that only few people monitor the
issue tracking system.

• For out-of-memory problems, please analyze the problem yourself
first, for example using the command line option -XX:
+HeapDumpOnOutOfMemoryError (to create a heap dump file on out
of memory) and a memory analysis tool such as the Eclipse Memory
Analyzer (MAT).

• It may take a few days to get an answers. Please do not double post.

Automated Build
This build process is automated and runs regularly. The build process
includes running the tests and code coverage, using the command line
./build.sh jar testCI. The results are available on CI workflow page.

Generating Railroad Diagrams
The railroad diagrams of the SQL grammar are HTML, formatted as nested
tables. The diagrams are generated as follows:

• The BNF parser (org.h2.bnf.Bnf) reads and parses the BNF from the
file help.csv.

• The page parser (org.h2.server.web.PageParser) reads the template
HTML file and fills in the diagrams.

• The rail images (one straight, four junctions, two turns) are
generated using a simple Java application.

To generate railroad diagrams for other grammars, see the package
org.h2.jcr. This package is used to generate the SQL-2 railroad diagrams
for the JCR 2.0 specification.

426 of 436

https://github.com/h2database/h2database/actions?query=workflow%3ACI
https://www.eclipse.org/mat/
https://www.eclipse.org/mat/
https://github.com/h2database/h2database/issues
https://groups.google.com/g/h2-database

History
Change Log
History of this Database Engine
Why Java
Supporters

Change Log
The up-to-date change log is available here

History of this Database Engine
The development of H2 was started in May 2004, but it was first published
on December 14th 2005. The original author of H2, Thomas Mueller, is
also the original developer of Hypersonic SQL. In 2001, he joined
PointBase Inc. where he wrote PointBase Micro, a commercial Java SQL
database. At that point, he had to discontinue Hypersonic SQL. The
HSQLDB Group was formed to continued to work on the Hypersonic SQL
codebase. The name H2 stands for Hypersonic 2, however H2 does not
share code with Hypersonic SQL or HSQLDB. H2 is built from scratch.

Why Java
The main reasons to use a Java database are:

• Very simple to integrate in Java applications
• Support for many different platforms
• More secure than native applications (no buffer overflows)
• User defined functions (or triggers) run very fast
• Unicode support

Some think Java is too slow for low level operations, but this is no longer
true. Garbage collection for example is now faster than manual memory
management.

Developing Java code is faster than developing C or C++ code. When
using Java, most time can be spent on improving the algorithms instead of
porting the code to different platforms or doing memory management.
Features such as Unicode and network libraries are already built-in. In
Java, writing secure code is easier because buffer overflows can not occur.
Features such as reflection can be used for randomized testing.

427 of 436

changelog.html

Java is future proof: a lot of companies support Java. Java is now open
source.

To increase the portability and ease of use, this software depends on very
few libraries. Features that are not available in open source Java
implementations (such as Swing) are not used, or only used for optional
features.

Supporters
Many thanks for those who reported bugs, gave valuable feedback, spread
the word, and translated this project.

Also many thanks to the donors. To become a donor, use PayPal (at the
very bottom of the main web page). Donators are:

• Martin Wildam, Austria
• tagtraum industries incorporated, USA
• TimeWriter, Netherlands
• Cognitect, USA
• Code 42 Software, Inc., Minneapolis
• Code Lutin, France
• NetSuxxess GmbH, Germany
• Poker Copilot, Steve McLeod, Germany
• SkyCash, Poland
• Lumber-mill, Inc., Japan
• StockMarketEye, USA
• Eckenfelder GmbH & Co.KG, Germany
• Jun Iyama, Japan
• Steven Branda, USA
• Anthony Goubard, Netherlands
• Richard Hickey, USA
• Alessio Jacopo D'Adamo, Italy
• Ashwin Jayaprakash, USA
• Donald Bleyl, USA
• Frank Berger, Germany
• Florent Ramiere, France
• Antonio Casqueiro, Portugal
• Oliver Computing LLC, USA
• Harpal Grover Consulting Inc., USA
• Elisabetta Berlini, Italy

428 of 436

https://www.eckenfelder.de/
https://www.stockmarketeye.com/
https://lumber-mill.co.jp/
https://www.skycash.com/
https://pokercopilot.com/
http://www.netsuxxess.de/
https://www.codelutin.com/
https://www.code42.com/
https://cognitect.com/
https://www.timewriter.com/
http://www.tagtraum.com/

• William Gilbert, USA
• Antonio Dieguez Rojas, Chile
• Ontology Works, USA
• Pete Haidinyak, USA
• William Osmond, USA
• Joachim Ansorg, Germany
• Oliver Soerensen, Germany
• Christos Vasilakis, Greece
• Fyodor Kupolov, Denmark
• Jakob Jenkov, Denmark
• Stéphane Chartrand, Switzerland
• Glenn Kidd, USA
• Gustav Trede, Sweden
• Joonas Pulakka, Finland
• Bjorn Darri Sigurdsson, Iceland
• Gray Watson, USA
• Erik Dick, Germany
• Pengxiang Shao, China
• Bilingual Marketing Group, USA
• Philippe Marschall, Switzerland
• Knut Staring, Norway
• Theis Borg, Denmark
• Mark De Mendonca Duske, USA
• Joel A. Garringer, USA
• Olivier Chafik, France
• Rene Schwietzke, Germany
• Jalpesh Patadia, USA
• Takanori Kawashima, Japan
• Terrence JC Huang, China
• JiaDong Huang, Australia
• Laurent van Roy, Belgium
• Qian Chen, China
• Clinton Hyde, USA
• Kritchai Phromros, Thailand
• Alan Thompson, USA
• Ladislav Jech, Czech Republic
• Dimitrijs Fedotovs, Latvia
• Richard Manley-Reeve, United Kingdom

429 of 436

http://www.FairGo128.com/
https://www.ontologyworks.com/

• Daniel Cyr, ThirdHalf.com, LLC, USA
• Peter Jünger, Germany
• Dan Keegan, USA
• Rafel Israels, Germany
• Fabien Todescato, France
• Cristan Meijer, Netherlands
• Adam McMahon, USA
• Fábio Gomes Lisboa Gomes, Brasil
• Lyderic Landry, England
• Mederp, Morocco
• Joaquim Golay, Switzerland
• Clemens Quoss, Germany
• Kervin Pierre, USA
• Jake Bellotti, Australia
• Arun Chittanoor, USA

430 of 436

Frequently Asked Questions
I Have a Problem or Feature Request
Are there Known Bugs? When is the Next Release?
Is this Database Engine Open Source?
Is Commercial Support Available?
How to Create a New Database?
How to Connect to a Database?
Where are the Database Files Stored?
What is the Size Limit (Maximum Size) of a Database?
Is it Reliable?
Why is Opening my Database Slow?
My Query is Slow
H2 is Very Slow
Column Names are Incorrect?
Float is Double?
How to Translate this Project?
How to Contribute to this Project?

I Have a Problem or Feature Request

Please read the support checklist.

Are there Known Bugs? When is the Next Release?

Usually, bugs get fixes as they are found. There is a release every few
weeks. Here is the list of known and confirmed issues:

• When opening a database file in a timezone that has different
daylight saving rules: the time part of dates where the daylight
saving doesn't match will differ. This is not a problem within regions
that use the same rules (such as, within USA, or within Europe), even
if the timezone itself is different. As a workaround, export the
database to a SQL script using the old timezone, and create a new
database in the new timezone.

• Old versions of Tomcat and Glassfish 3 set most static fields (final or
non-final) to null when unloading a web application. This can cause a
NullPointerException. In Tomcat >= 6.0 this behavior can be disabled
by setting the system property
org.apache.catalina.loader.WebappClassLoader.ENABLE_CLEAR_REFE

431 of 436

RENCES=false. A known workaround is to put the h2*.jar file in a
shared lib directory (common/lib). Tomcat 8.5 and newer versions
don't clear fields and don't have such property.

• Some problems have been found with right outer join. Internally, it is
converted to left outer join, which does not always produce the same
results as other databases when used in combination with other
joins. This problem is fixed in H2 version 1.3.

For a complete list, see Open Issues.

Is this Database Engine Open Source?

Yes. It is free to use and distribute, and the source code is included. See
also under license.

Is Commercial Support Available?

No, currently commercial support is not available.

How to Create a New Database?

By default, a new database is automatically created if it does not yet exist
when embedded URL is used. See Creating New Databases.

How to Connect to a Database?

The database driver is org.h2.Driver, and the database URL starts with
jdbc:h2:. To connect to a database using JDBC, use the following code:

Connection conn = DriverManager.getConnection("jdbc:h2:~/test", "sa",
"");

Where are the Database Files Stored?

When using database URLs like jdbc:h2:~/test, the database is stored in
the user directory. For Windows, this is usually C:\Documents and
Settings\<userName> or C:\Users\<userName>. If the base directory is
not set (as in jdbc:h2:./test), the database files are stored in the directory
where the application is started (the current working directory). When
using the H2 Console application from the start menu, this is <Installation
Directory>/bin. The base directory can be set in the database URL. A fixed
or relative path can be used. When using the URL
jdbc:h2:file:./data/sample, the database is stored in the directory data
(relative to the current working directory). The directory is created

432 of 436

https://github.com/h2database/h2database/issues

automatically if it does not yet exist. It is also possible to use the fully
qualified directory name (and for Windows, drive name). Example:
jdbc:h2:file:C:/data/test

What is the Size Limit (Maximum Size) of a Database?

See Limits and Limitations.

Is it Reliable?

That is not easy to say. It is still a quite new product. A lot of tests have
been written, and the code coverage of these tests is higher than 80% for
each package. Randomized stress tests are run regularly. But there are
probably still bugs that have not yet been found (as with most software).
Some features are known to be dangerous, they are only supported for
situations where performance is more important than reliability. Those
dangerous features are:

• Disabling the transaction log or FileDescriptor.sync() using LOG=0 or
LOG=1.

• Using the transaction isolation level READ_UNCOMMITTED
(LOCK_MODE 0) while at the same time using multiple connections.

• Disabling database file protection using (setting FILE_LOCK to NO in
the database URL).

• Disabling referential integrity using SET REFERENTIAL_INTEGRITY
FALSE.

In addition to that, running out of memory should be avoided. In older
versions, OutOfMemory errors while using the database could corrupt a
databases.

This database is well tested using automated test cases. The tests run
every night and run for more than one hour. But not all areas of this
database are equally well tested. When using one of the following features
for production, please ensure your use case is well tested (if possible with
automated test cases). The areas that are not well tested are:

• Platforms other than Windows, Linux, Mac OS X, or runtime
environments other than Oracle / OpenJDK 7, 8, 9.

• The features AUTO_SERVER and AUTO_RECONNECT.
• Cluster mode, 2-phase commit, savepoints.
• Fulltext search.

433 of 436

• Operations on LOBs over 2 GB.
• The optimizer may not always select the best plan.
• Using the ICU4J collator.

Areas considered experimental are:

• The PostgreSQL server
• Clustering (there are cases were transaction isolation can be broken

due to timing issues, for example one session overtaking another
session).

• Compatibility modes for other databases (only some features are
implemented).

• The soft reference cache (CACHE_TYPE=SOFT_LRU). It might not
improve performance, and out of memory issues have been reported.

Some users have reported that after a power failure, the database cannot
be opened sometimes. In this case, use a backup of the database or the
Recover tool. Please report such problems. The plan is that the database
automatically recovers in all situations.

Why is Opening my Database Slow?

To find out what the problem is, use the H2 Console and click on "Test
Connection" instead of "Login". After the "Login Successful" appears, click
on it (it's a link). This will list the top stack traces. Then either analyze this
yourself, or post those stack traces in the Google Group.

Other possible reasons are: the database is very big (many GB), or
contains linked tables that are slow to open.

My Query is Slow

Slow SELECT (or DELETE, UPDATE, MERGE) statement can have multiple
reasons. Follow this checklist:

• Run ANALYZE (see documentation for details).
• Run the query with EXPLAIN and check if indexes are used (see

documentation for details).
• If required, create additional indexes and try again using ANALYZE

and EXPLAIN.
• If it doesn't help please report the problem.

434 of 436

H2 is Very Slow

By default, H2 closes the database when the last connection is closed. If
your application closes the only connection after each operation, the
database is opened and closed a lot, which is quite slow. There are
multiple ways to solve this problem, see Database Performance Tuning.

Column Names are Incorrect?

For the query SELECT ID AS X FROM TEST the method
ResultSetMetaData.getColumnName() returns ID, I expect it to return X.
What's wrong?

This is not a bug. According the JDBC specification, the method
ResultSetMetaData.getColumnName() should return the name of the
column and not the alias name. If you need the alias name, use
ResultSetMetaData.getColumnLabel(). Some other database don't work
like this yet (they don't follow the JDBC specification). If you need
compatibility with those databases, use the Compatibility Mode.

This also applies to DatabaseMetaData calls that return a result set. The
columns in the JDBC API are column labels, not column names.

Float is Double?

For a table defined as CREATE TABLE TEST(X FLOAT) the method
ResultSet.getObject() returns a java.lang.Double, I expect it to return a
java.lang.Float. What's wrong?

This is not a bug. According the JDBC specification, the JDBC data type
FLOAT is equivalent to DOUBLE, and both are mapped to java.lang.Double.
See also Mapping SQL and Java Types - 8.3.10 FLOAT.

Use REAL or FLOAT(24) data type for java.lang.Float values.

How to Translate this Project?

For more information, see Build/Translating.

How to Contribute to this Project?

There are various way to help develop an open source project like H2. The
first step could be to translate the error messages and the GUI to your
native language. Then, you could provide patches. Please start with small
patches. That could be adding a test case to improve the code coverage

435 of 436

https://docs.oracle.com/javase/1.5.0/docs/guide/jdbc/getstart/mapping.html#1055162
https://docs.oracle.com/javase/8/docs/api/java/sql/ResultSetMetaData.html#getColumnName-int-

(the target code coverage for this project is 90%, higher is better). You will
have to develop, build and run the tests. Once you are familiar with the
code, you could implement missing features from the feature request list.
I suggest to start with very small features that are easy to implement.
Keep in mind to provide test cases as well.

436 of 436

https://github.com/h2database/h2database/issues?q=is%3Aissue+is%3Aopen+label%3Aenhancement

	Quickstart
	Embedding H2 in an Application
	The H2 Console Application
	Step-by-Step
	Installation
	Start the Console
	Login
	Sample
	Execute
	Disconnect
	End

	Installation
	Requirements
	Database Engine
	H2 Console

	Supported Platforms
	Installing the Software
	Directory Structure

	Tutorial
	Starting and Using the H2 Console
	Firewall
	Testing Java
	Error Message 'Port may be in use'
	Using another Port
	Connecting to the Server using a Browser
	Multiple Concurrent Sessions
	Login
	Error Messages
	Adding Database Drivers
	Using the H2 Console
	Inserting Table Names or Column Names
	Disconnecting and Stopping the Application

	Special H2 Console Syntax
	Settings of the H2 Console
	Connecting to a Database using JDBC
	Creating New Databases
	Using the Server
	Starting the Server Tool from Command Line
	Connecting to the TCP Server
	Starting the TCP Server within an Application
	Stopping a TCP Server from Another Process

	Using Hibernate
	Using TopLink and Glassfish
	Using EclipseLink
	Using Apache ActiveMQ
	Using H2 within NetBeans
	Using H2 with jOOQ
	Using Databases in Web Applications
	Embedded Mode
	Server Mode
	Using a Servlet Listener to Start and Stop a Database
	Using the H2 Console Servlet

	CSV (Comma Separated Values) Support
	Reading a CSV File from Within a Database
	Importing Data from a CSV File
	Writing a CSV File from Within a Database
	Writing a CSV File from a Java Application
	Reading a CSV File from a Java Application

	Upgrade, Backup, and Restore
	Database Upgrade
	Backup using the Script Tool
	Restore from a Script
	Online Backup

	Command Line Tools
	The Shell Tool
	Using OpenOffice Base
	Java Web Start / JNLP
	Using a Connection Pool
	Fulltext Search
	Using the Native Fulltext Search
	Using the Apache Lucene Fulltext Search

	User-Defined Variables
	Date and Time
	Using Spring
	Using the TCP Server

	OSGi
	Java Management Extension (JMX)

	Features
	Feature List
	Main Features
	Additional Features
	SQL Support
	Security Features
	Other Features and Tools

	H2 in Use
	Connection Modes
	Embedded Mode
	Server Mode
	Mixed Mode

	Database URL Overview
	Connecting to an Embedded (Local) Database
	In-Memory Databases
	Database Files Encryption
	Creating a New Database with File Encryption
	Connecting to an Encrypted Database
	Encrypting or Decrypting a Database

	Database File Locking
	Opening a Database Only if it Already Exists
	Closing a Database
	Delayed Database Closing
	Don't Close a Database when the VM Exits

	Execute SQL on Connection
	Ignore Unknown Settings
	Changing Other Settings when Opening a Connection
	Custom File Access Mode
	Multiple Connections
	Opening Multiple Databases at the Same Time
	Multiple Connections to the Same Database: Client/Server
	Multithreading Support
	Locking, Lock-Timeout, Deadlocks

	Database File Layout
	Moving and Renaming Database Files
	Backup

	Logging and Recovery
	Compatibility
	Compatibility Modes
	REGULAR Compatibility mode
	STRICT Compatibility Mode
	LEGACY Compatibility Mode
	DB2 Compatibility Mode
	Derby Compatibility Mode
	HSQLDB Compatibility Mode
	MS SQL Server Compatibility Mode
	MariaDB Compatibility Mode
	MySQL Compatibility Mode
	Oracle Compatibility Mode
	PostgreSQL Compatibility Mode

	Auto-Reconnect
	Automatic Mixed Mode
	Page Size
	Using the Trace Options
	Trace Options
	Setting the Maximum Size of the Trace File
	Java Code Generation

	Using Other Logging APIs
	Read Only Databases
	Read Only Databases in Zip or Jar File
	Opening a Corrupted Database

	Generated Columns (Computed Columns) / Function Based Index
	Multi-Dimensional Indexes
	User-Defined Functions and Stored Procedures
	Referencing a Compiled Method
	Declaring Functions as Source Code
	Method Overloading
	Function Data Type Mapping
	Functions That Require a Connection
	Functions Throwing an Exception
	Functions Returning a Result Set
	Using SimpleResultSet
	Using a Function as a Table

	Pluggable or User-Defined Tables
	Triggers
	Compacting a Database
	Cache Settings
	External authentication (Experimental)

	Securing your H2
	Introduction
	Network exposed
	Alias / Stored procedures
	Grants / Roles / Permissions
	Encrypted storage

	Performance
	Performance Comparison
	Embedded
	Client-Server
	Benchmark Results and Comments
	H2
	HSQLDB
	Derby
	PostgreSQL
	MySQL
	SQLite
	Firebird
	Why Oracle / MS SQL Server / DB2 are Not Listed

	About this Benchmark
	How to Run
	Separate Process per Database
	Number of Connections
	Real-World Tests
	Comparing Embedded with Server Databases
	Test Platform
	Multiple Runs
	Memory Usage
	Delayed Operations
	Transaction Commit / Durability
	Using Prepared Statements
	Currently Not Tested: Startup Time

	PolePosition Benchmark
	Database Performance Tuning
	Keep Connections Open or Use a Connection Pool
	Use a Modern JVM
	Virus Scanners
	Using the Trace Options
	Index Usage
	Index Hints
	How Data is Stored Internally
	Optimizer
	Expression Optimization
	COUNT(*) Optimization
	Updating Optimizer Statistics / Column Selectivity
	In-Memory (Hash) Indexes
	Use Prepared Statements
	Prepared Statements and IN(...)
	Optimization Examples
	Cache Size and Type
	Data Types
	Sorted Insert Optimization

	Using the Built-In Profiler
	Application Profiling
	Analyze First

	Database Profiling
	Statement Execution Plans
	Displaying the Scan Count
	Special Optimizations

	How Data is Stored and How Indexes Work
	Indexes
	Using Multiple Indexes

	Fast Database Import

	Advanced
	Result Sets
	Statements that Return a Result Set
	Limiting the Number of Rows
	Large Result Sets and External Sorting

	Large Objects
	Storing and Reading Large Objects
	When to use CLOB/BLOB

	Linked Tables
	Updatable Views
	Transaction Isolation
	Multi-Version Concurrency Control (MVCC)
	Lock Timeout

	Clustering / High Availability
	Using the CreateCluster Tool
	Detect Which Cluster Instances are Running
	Clustering Algorithm and Limitations

	Two Phase Commit
	Compatibility
	Transaction Commit when Autocommit is On

	Keywords / Reserved Words
	Standards Compliance
	Supported Character Sets, Character Encoding, and Unicode

	Run as Windows Service
	Install the Service
	Start the Service
	Connect to the H2 Console
	Stop the Service
	Uninstall the Service
	Additional JDBC drivers

	ODBC Driver
	ODBC Installation
	Starting the Server
	ODBC Configuration
	PG Protocol Support Limitations
	Security Considerations
	Using Microsoft Access

	ACID
	Atomicity
	Consistency
	Isolation
	Durability

	Durability Problems
	Ways to (Not) Achieve Durability
	Running the Durability Test

	Using the Recover Tool
	File Locking Protocols
	File Locking Method 'File'
	File Locking Method 'Socket'
	File Locking Method 'FS'

	Using Passwords
	Using Secure Passwords
	Passwords: Using Char Arrays instead of Strings
	Passing the User Name and/or Password in the URL

	Password Hash
	Protection against SQL Injection
	What is SQL Injection
	Disabling Literals
	Using Constants
	Using the ZERO() Function

	Protection against Remote Access
	Restricting Class Loading and Usage
	Security Protocols
	User Password Encryption
	File Encryption
	Wrong Password / User Name Delay
	HTTPS Connections

	TLS Connections
	Universally Unique Identifiers (UUID)
	Spatial Features
	Recursive Queries
	Settings Read from System Properties
	Setting the Server Bind Address
	Pluggable File System
	Split File System
	Java Objects Serialization
	Limits and Limitations
	Glossary and Links

	Commands
	Index
	Commands (Data Manipulation)
	Commands (Data Definition)
	Commands (Other)

	Details
	Commands (Data Manipulation)
	SELECT
	INSERT
	UPDATE
	DELETE
	BACKUP
	CALL
	EXECUTE IMMEDIATE
	EXPLAIN
	MERGE INTO
	MERGE USING
	RUNSCRIPT
	SCRIPT
	SHOW
	Explicit table
	Table value
	WITH

	Commands (Data Definition)
	ALTER DOMAIN
	ALTER DOMAIN ADD CONSTRAINT
	ALTER DOMAIN DROP CONSTRAINT
	ALTER DOMAIN RENAME
	ALTER DOMAIN RENAME CONSTRAINT
	ALTER INDEX RENAME
	ALTER SCHEMA RENAME
	ALTER SEQUENCE
	ALTER TABLE ADD
	ALTER TABLE ADD CONSTRAINT
	ALTER TABLE RENAME CONSTRAINT
	ALTER TABLE ALTER COLUMN
	ALTER TABLE DROP COLUMN
	ALTER TABLE DROP CONSTRAINT
	ALTER TABLE SET
	ALTER TABLE RENAME
	ALTER USER ADMIN
	ALTER USER RENAME
	ALTER USER SET PASSWORD
	ALTER VIEW RECOMPILE
	ALTER VIEW RENAME
	ANALYZE
	COMMENT ON
	CREATE AGGREGATE
	CREATE ALIAS
	CREATE CONSTANT
	CREATE DOMAIN
	CREATE INDEX
	CREATE LINKED TABLE
	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	CREATE MATERIALIZED VIEW
	DROP AGGREGATE
	DROP ALIAS
	DROP ALL OBJECTS
	DROP CONSTANT
	DROP DOMAIN
	DROP INDEX
	DROP ROLE
	DROP SCHEMA
	DROP SEQUENCE
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	DROP MATERIALIZED VIEW
	REFRESH MATERIALIZED VIEW
	TRUNCATE TABLE

	Commands (Other)
	CHECKPOINT
	CHECKPOINT SYNC
	COMMIT
	COMMIT TRANSACTION
	GRANT RIGHT
	GRANT ALTER ANY SCHEMA
	GRANT ROLE
	HELP
	PREPARE COMMIT
	REVOKE RIGHT
	REVOKE ALTER ANY SCHEMA
	REVOKE ROLE
	ROLLBACK
	ROLLBACK TRANSACTION
	SAVEPOINT
	SET @
	SET ALLOW_LITERALS
	SET AUTOCOMMIT
	SET CACHE_SIZE
	SET CLUSTER
	SET BUILTIN_ALIAS_OVERRIDE
	SET CATALOG
	SET COLLATION
	SET DATABASE_EVENT_LISTENER
	SET DB_CLOSE_DELAY
	SET DEFAULT_LOCK_TIMEOUT
	SET DEFAULT_NULL_ORDERING
	SET DEFAULT_TABLE_TYPE
	SET EXCLUSIVE
	SET IGNORECASE
	SET IGNORE_CATALOGS
	SET JAVA_OBJECT_SERIALIZER
	SET LAZY_QUERY_EXECUTION
	SET LOCK_MODE
	SET LOCK_TIMEOUT
	SET MAX_LENGTH_INPLACE_LOB
	SET MAX_LOG_SIZE
	SET MAX_MEMORY_ROWS
	SET MAX_MEMORY_UNDO
	SET MAX_OPERATION_MEMORY
	SET MODE
	SET NON_KEYWORDS
	SET OPTIMIZE_REUSE_RESULTS
	SET PASSWORD
	SET QUERY_STATISTICS
	SET QUERY_STATISTICS_MAX_ENTRIES
	SET QUERY_TIMEOUT
	SET REFERENTIAL_INTEGRITY
	SET RETENTION_TIME
	SET SALT HASH
	SET SCHEMA
	SET SCHEMA_SEARCH_PATH
	SET SESSION CHARACTERISTICS
	SET THROTTLE
	SET TIME ZONE
	SET TRACE_LEVEL
	SET TRACE_MAX_FILE_SIZE
	SET TRUNCATE_LARGE_LENGTH
	SET VARIABLE_BINARY
	SET WRITE_DELAY
	SHUTDOWN

	Functions
	Index
	Numeric Functions
	String Functions
	Time and Date Functions
	System Functions
	JSON Functions
	Table Functions

	Details
	Numeric Functions
	ABS
	ACOS
	ASIN
	ATAN
	COS
	COSH
	COT
	SIN
	SINH
	TAN
	TANH
	ATAN2
	BITAND
	BITOR
	BITXOR
	BITNOT
	BITNAND
	BITNOR
	BITXNOR
	BITGET
	BITCOUNT
	LSHIFT
	RSHIFT
	ULSHIFT
	URSHIFT
	ROTATELEFT
	ROTATERIGHT
	MOD
	CEIL
	DEGREES
	EXP
	FLOOR
	LN
	LOG
	LOG10
	ORA_HASH
	RADIANS
	SQRT
	PI
	POWER
	RAND
	RANDOM_UUID
	ROUND
	SECURE_RAND
	SIGN
	ENCRYPT
	DECRYPT
	HASH
	TRUNC
	COMPRESS
	EXPAND
	ZERO

	String Functions
	ASCII
	BIT_LENGTH
	CHAR_LENGTH
	OCTET_LENGTH
	CHAR
	CONCAT
	CONCAT_WS
	DIFFERENCE
	HEXTORAW
	RAWTOHEX
	INSERT Function
	LOWER
	UPPER
	LEFT
	RIGHT
	LOCATE
	LPAD
	RPAD
	LTRIM
	RTRIM
	BTRIM
	TRIM
	REGEXP_REPLACE
	REGEXP_LIKE
	REGEXP_SUBSTR
	REPEAT
	REPLACE
	SOUNDEX
	SPACE
	STRINGDECODE
	STRINGENCODE
	STRINGTOUTF8
	SUBSTRING
	UTF8TOSTRING
	QUOTE_IDENT
	XMLATTR
	XMLNODE
	XMLCOMMENT
	XMLCDATA
	XMLSTARTDOC
	XMLTEXT
	TO_CHAR
	TRANSLATE

	Time and Date Functions
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	LOCALTIME
	LOCALTIMESTAMP
	DATEADD
	DATEDIFF
	DATE_TRUNC
	LAST_DAY
	DAYNAME
	DAY_OF_MONTH
	DAY_OF_WEEK
	ISO_DAY_OF_WEEK
	DAY_OF_YEAR
	EXTRACT
	FORMATDATETIME
	HOUR
	MINUTE
	MONTH
	MONTHNAME
	PARSEDATETIME
	QUARTER
	SECOND
	WEEK
	ISO_WEEK
	YEAR
	ISO_YEAR

	System Functions
	ABORT_SESSION
	ARRAY_GET
	CARDINALITY
	ARRAY_CONTAINS
	ARRAY_CAT
	ARRAY_APPEND
	ARRAY_MAX_CARDINALITY
	TRIM_ARRAY
	ARRAY_SLICE
	AUTOCOMMIT
	CANCEL_SESSION
	CASEWHEN Function
	COALESCE
	CONVERT
	CURRVAL
	CSVWRITE
	CURRENT_SCHEMA
	CURRENT_CATALOG
	DATABASE_PATH
	DATA_TYPE_SQL
	DB_OBJECT_ID
	DB_OBJECT_SQL
	DB_OBJECT_SIZE
	DB_OBJECT_TOTAL_SIZE
	DB_OBJECT_APPROXIMATE_SIZE
	DB_OBJECT_APPROXIMATE_TOTAL_SIZE
	DECODE
	DISK_SPACE_USED
	SIGNAL
	ESTIMATED_ENVELOPE
	FILE_READ
	FILE_WRITE
	GREATEST
	LEAST
	LOCK_MODE
	LOCK_TIMEOUT
	MEMORY_FREE
	MEMORY_USED
	NEXTVAL
	NULLIF
	NVL2
	READONLY
	ROWNUM
	SESSION_ID
	SET
	TRANSACTION_ID
	TRUNCATE_VALUE
	CURRENT_PATH
	CURRENT_ROLE
	CURRENT_USER
	H2VERSION

	JSON Functions
	JSON_OBJECT
	JSON_ARRAY

	Table Functions
	CSVREAD
	LINK_SCHEMA
	TABLE
	UNNEST

	Aggregate Functions
	Index
	General Aggregate Functions
	Binary Set Functions
	Ordered Aggregate Functions
	Hypothetical Set Functions
	Inverse Distribution Functions
	JSON Aggregate Functions

	Details
	General Aggregate Functions
	AVG
	MAX
	MIN
	SUM
	EVERY
	ANY
	COUNT
	STDDEV_POP
	STDDEV_SAMP
	VAR_POP
	VAR_SAMP
	ANY_VALUE
	BIT_AND_AGG
	BIT_OR_AGG
	BIT_XOR_AGG
	BIT_NAND_AGG
	BIT_NOR_AGG
	BIT_XNOR_AGG
	ENVELOPE

	Binary Set Functions
	COVAR_POP
	COVAR_SAMP
	CORR
	REGR_SLOPE
	REGR_INTERCEPT
	REGR_COUNT
	REGR_R2
	REGR_AVGX
	REGR_AVGY
	REGR_SXX
	REGR_SYY
	REGR_SXY

	Ordered Aggregate Functions
	LISTAGG
	ARRAY_AGG

	Hypothetical Set Functions
	RANK aggregate
	DENSE_RANK aggregate
	PERCENT_RANK aggregate
	CUME_DIST aggregate

	Inverse Distribution Functions
	PERCENTILE_CONT
	PERCENTILE_DISC
	MEDIAN
	MODE

	JSON Aggregate Functions
	JSON_OBJECTAGG
	JSON_ARRAYAGG

	Window Functions
	Index
	Row Number Function
	Rank Functions
	Lead or Lag Functions
	Nth Value Functions
	Other Window Functions

	Details
	Row Number Function
	ROW_NUMBER

	Rank Functions
	RANK
	DENSE_RANK
	PERCENT_RANK
	CUME_DIST

	Lead or Lag Functions
	LEAD
	LAG

	Nth Value Functions
	FIRST_VALUE
	LAST_VALUE
	NTH_VALUE

	Other Window Functions
	NTILE
	RATIO_TO_REPORT

	Data Types
	Index
	Details
	CHARACTER
	CHARACTER VARYING
	CHARACTER LARGE OBJECT
	VARCHAR_IGNORECASE
	BINARY
	BINARY VARYING
	BINARY LARGE OBJECT
	BOOLEAN
	TINYINT
	SMALLINT
	INTEGER
	BIGINT
	NUMERIC
	REAL
	DOUBLE PRECISION
	DECFLOAT
	DATE
	TIME
	TIME WITH TIME ZONE
	TIMESTAMP
	TIMESTAMP WITH TIME ZONE
	INTERVAL
	JAVA_OBJECT
	ENUM
	GEOMETRY
	JSON
	UUID
	ARRAY
	ROW
	Interval Data Types
	INTERVAL YEAR
	INTERVAL MONTH
	INTERVAL DAY
	INTERVAL HOUR
	INTERVAL MINUTE
	INTERVAL SECOND
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO HOUR
	INTERVAL DAY TO MINUTE
	INTERVAL DAY TO SECOND
	INTERVAL HOUR TO MINUTE
	INTERVAL HOUR TO SECOND
	INTERVAL MINUTE TO SECOND

	SQL Grammar
	Index
	Literals
	Datetime fields
	Other Grammar

	Details
	Literals
	Value
	Approximate numeric
	Array
	Boolean
	Bytes
	Date
	Date and time
	Dollar Quoted String
	Exact numeric
	Hex Number
	Octal Number
	Binary Number
	Int
	GEOMETRY
	JSON
	Long
	Null
	Number
	Numeric
	String
	UUID
	Time
	Time with time zone
	Timestamp
	Timestamp with time zone
	Interval
	INTERVAL YEAR
	INTERVAL MONTH
	INTERVAL DAY
	INTERVAL HOUR
	INTERVAL MINUTE
	INTERVAL SECOND
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO HOUR
	INTERVAL DAY TO MINUTE
	INTERVAL DAY TO SECOND
	INTERVAL HOUR TO MINUTE
	INTERVAL HOUR TO SECOND
	INTERVAL MINUTE TO SECOND

	Datetime fields
	Datetime field
	Year field
	Month field
	Day of month field
	Hour field
	Minute field
	Second field
	Timezone hour field
	Timezone minute field
	Timezone second field
	Millennium field
	Century field
	Decade field
	Quarter field
	Millisecond field
	Microsecond field
	Nanosecond field
	Day of year field
	ISO day of week field
	ISO week field
	ISO week year field
	Day of week field
	Week field
	Week year field
	Epoch field

	Other Grammar
	Alias
	And Condition
	Array element reference
	Field reference
	Array value constructor by query
	Case expression
	Simple case
	Searched case
	Cast specification
	Cipher
	Column Definition
	Column Constraint Definition
	Comment
	Bracketed comment
	Compare
	Condition
	Condition Right Hand Side
	Comparison Right Hand Side
	Quantified Comparison Right Hand Side
	Null Predicate Right Hand Side
	Distinct Predicate Right Hand Side
	Quantified Distinct Predicate Right Hand Side
	Boolean Test Right Hand Side
	Type Predicate Right Hand Side
	JSON Predicate Right Hand Side
	Between Predicate Right Hand Side
	In Predicate Right Hand Side
	Like Predicate Right Hand Side
	Regexp Predicate Right Hand Side
	Nulls Distinct
	Table Constraint Definition
	Constraint Name Definition
	Csv Options
	Data Change Delta Table
	Data Type or Domain
	Data Type
	Predefined Type
	Digit
	Expression
	Factor
	Grouping element
	Hex
	Index Column
	Insert values
	Interval qualifier
	Join specification
	Merge when clause
	Merge when matched clause
	Merge when not matched clause
	Name
	Operand
	Override clause
	Query
	Quoted Name
	Referential Constraint
	References Specification
	Referential Action
	Script Compression Encryption
	Select order
	Row value expression
	Select Expression
	Sequence value expression
	Sequence option
	Alter sequence option
	Alter identity column option
	Basic sequence option
	Set clause list
	Sort specification
	Sort specification list
	Summand
	Table Expression
	Update target
	Within group specification
	Wildcard expression
	Window name or specification
	Window specification
	Window frame
	Window frame preceding
	Window frame bound
	Term
	Time zone
	Column

	System Tables
	Index
	Information Schema
	CHECK_CONSTRAINTS
	COLLATIONS
	COLUMNS
	COLUMN_PRIVILEGES
	CONSTANTS
	CONSTRAINT_COLUMN_USAGE
	DOMAINS
	DOMAIN_CONSTRAINTS
	ELEMENT_TYPES
	ENUM_VALUES
	FIELDS
	INDEXES
	INDEX_COLUMNS
	INFORMATION_SCHEMA_CATALOG_NAME
	IN_DOUBT
	KEY_COLUMN_USAGE
	LOCKS
	PARAMETERS
	QUERY_STATISTICS
	REFERENTIAL_CONSTRAINTS
	RIGHTS
	ROLES
	ROUTINES
	SCHEMATA
	SEQUENCES
	SESSIONS
	SESSION_STATE
	SETTINGS
	SYNONYMS
	TABLES
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	TRIGGERS
	USERS
	VIEWS

	Range Table

	Build
	Portability
	Environment
	Building the Software
	Using Apache Lucene

	Using Maven 2
	Using a Central Repository
	Maven Plugin to Start and Stop the TCP Server
	Using Snapshot Version

	Native Image
	Using Eclipse
	Translating
	Submitting Source Code Changes
	Reporting Problems or Requests
	Automated Build
	Generating Railroad Diagrams

	History
	Change Log
	History of this Database Engine
	Why Java
	Supporters

	Frequently Asked Questions
	I Have a Problem or Feature Request
	Are there Known Bugs? When is the Next Release?
	Is this Database Engine Open Source?
	Is Commercial Support Available?
	How to Create a New Database?
	How to Connect to a Database?
	Where are the Database Files Stored?
	What is the Size Limit (Maximum Size) of a Database?
	Is it Reliable?
	Why is Opening my Database Slow?
	My Query is Slow
	H2 is Very Slow
	Column Names are Incorrect?
	Float is Double?
	How to Translate this Project?
	How to Contribute to this Project?

