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RIDECORE Overview

This part first explains the overall behavior of RIDECORE. After that, various parameters that de-
termine the specifications of RIDECORE are shown.

1 Overall Behavior

Fig. 1 shows the overview of RIDECORE pipeline. RIDECORE has a six-stage pipeline structure,
consisting of Instruction Fetch (IF'), Instruction Decode (ID), Dispatch (DP), Select and Wakeup (SW),
Execution (EX), and Complete (COM). Every pipeline stage, except the Load/Store units in EX stage,
is executed one clock cycle.

In IF stage, at most two instructions are fetched from Instruction Memory (IMEM) by using Program
Counter (PC) and sent to later stage. By reading IMEM on the negative edge clock transitions and
writing the IF/ID latch on the positive edge clock transitions, IF stage can be executed in one clock
cycle. PC is speculatively updated using Gshare branch predictor.

ID stage decodes instructions fetched in IF stage and generates data for later stages. Speculative Tag
gen assigns Speculative Tag to the instructions. If there exists a branch instruction, both Speculative
Tag gen and Miss Prediction Fix Table will be updated.

DP stage first fetches source operands of two instructions from Architected Register File (ARF) and
Rename Register File (RRF). It next performs register renaming by allocating entries in Reorder Buffer
and RRF (called RRFTag in RIDECORE) to the instructions. Finally, Allocate Unit writes the data
needed for executing the instructions to Reservation Station (RS). Data forwarding is performed using
Source Operand Manager.

In SW stage, Issue Unit selects instructions that have all the necessary operands and issues them to
EX stage. When an instruction is issued, it is removed from Reservation Station immediately.

In EX stage, instructions are executed. When the execution of an instruction is completed, the result
is written to RRF. At the same time, Reorder Buffer is notified about the completion of the execution.
The Branch unit is responsible for determining whether branch predictions are correct and sending
the prediction results to some modules for appropriate actions. When a branch misprediction occurs,

speculatively executed instructions are invalidated by using Miss Prediction Fix Table. The EX stage of
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Fig.1 RIDECORE pipeline

every instruction, except Load/Store, is executed in one clock cycle. The operation of Load/Store Unit
is pipelined with two stages.

In COM stage, up to 2 instructions in Reorder Buffer are completed. Upon the completion of an
instruction, the data of the instruction in RRF are moved to ARF. The Renaming Table in ARF is

updated accordingly. The branch predictor is also updated with new information.

2 Specification Overview

Table 1 shows the specification of RIDECORE.



Table 1 The specification of RIDECORE

Instruction Set Architecture

RISC-V (A part of RV32IM, see doc/RISC-V-subset.pdf)

Number of ways

2 (Fetch, Decode, Dispatch, Complete)

Width

Data
Address

32
32

Number of entries

Architected Register File (ARF)
Rename Register File (RRF)

Reorder Buffer

Number of Checkpoint(Speculative Tag)

32

64

64
)

Number of entries in each Reservation Station

ALU
Load/Store
Branch
MUL

16

Number of Execution units

ALU
Load/Store
Branch
MUL
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Hardware Modules

This part describes the hardware modules inside RIDECORE. More in-depth explanations of some
modules can be found in John Paul Shen and Mikko H. Lipasti [1]. In these cases, we recommend the
readers to read the explanations in the book before reading the explanations in this document. For
example, if the explanations of a module should be read in the book from page 228 to page 231, we will

append (pp. 228-231) to the title of the section explaining the module.

3 pipe.if

In IF stage, two instructions are fetched from IMEM. PC is updated using the branch predictor. Fig.

2 shows the circuit of IF stage.
The size of each entry in IMEM is 128-bit. Thus, since the RV32IM has fixed length 32-bit instructions,

each entry of IMEM can contain four instructions.
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At each negative edge clock transition, pipe_if fetches four instructions using PC[31:4] as the index
of IMEM. Then, sellog (Fig. 3) selects two instructions from the four instructions using PC[3:2] and
writes them to the IF/ID latch at the positive edge clock transition. When PC is not divisible by 8,
sellog invalidates the 2nd selected instruction (Insn2 in Fig. 3) because this instruction has been already
selected previously. For example, when PC=0x2c, which is not divisible by 8, four instructions from
IMEM are at 0x20, 0x24, 0x28, and 0x2c. Insnl is the instruction at 0x2c while Insn2 is the instruction
at 0x20 which has been already selected previously (we expect Insn2 to be 0x30). In this case, Insn2 is
thus invalidated.

For simplicity, as shown in Fig. 2, Invalid Insnl is always set to 0. However, it may be set to 1 to kill

all instructions in IF stage when some events such as branch mispredictions are detected.

4  gshare_predictor (pp. 223-236, 469-472)

Fig. 4 shows the Gshare branch predictor circuit. It predicts whether a branch is taken in IF stage
by using shared Branch History Register (BHR), Pattern History Table (PHT), PC, and Branch Target
Buffer (BTB). Here, we present only some design decisions in implementing the predictor.

At the negative edge of every clock pulse, we read an entry of PHT with the read address = PC[12 :
3] BHR. If the read data is greater than 1, the prediction result is set to ”Taken”. Otherwise, it is
set to "Not Taken”. BHR is updated using the prediction result. However, if the prediction turns out

to be incorrect, BHR is restored to the original value. Thus, it is always backed up before every update.

4.1 pht

PHT is an array of 2-bit saturating counters used in Gshare predictor. Fig. 5 shows the circuit of PHT.

PHT is updated when a branch instruction is completed. The entry of PHT is incremented /decremented
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if the condition of the branch instruction is " Taken” /”Not Taken”.
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In COM stage, an entry of PHT is updated by first reading its original value on the negative edge

clock transition and then writing the updated value on the positive edge clock transition. PHT has two

read ports (one for reading at IF stage and the other at COM stage) and one write port (for writing at
COM stage). In RIDECORE, it is implemented using two true dual-port BRAMs.

4.2 btb

Branch Target Buffer (BTB) is composed of pairs of branch source and destination addresses. It is

implemented as a direct mapped cache to reduce the hardware resource usage. Because of this, the

prediction quality is modrate.
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Fig.6 Speculative Tag Generator

5 tag generator (pp. 228-231)

Fig. 6 shows the circuit of Tag Generator. The circuit has two registers. One contains the current
Speculative Tag (tagreg). The other contains the current branch depth (brdepth). Tag Generator receives
three signals from outside: branchvalidl, branchvalid2, and enable. branchvalidl/2 indicates whether
Insnl/2 is valid while enable indicates whether the instructions can be issued. Using these signals, Tag
Generator generates Speculative Tag (sptagl/2), speculative flag (speculativel/2), and updates tagreg
and brdepth.

Speculative Tag is assigned to instructions in the order of 00001, 00010, ..., 10000 (left rotation from
00001). If no Speculative Tag is available, Tag Generator will set flag attachable to zero and stall the tag
assignment process.

When branch prediction succeeds (prsuccess == 1), brdepth is decremented to free Speculative Tag.
When branch misprediction occurs (prmiss == 1), tagreg and brdepth are restored to the values before
the prediction is performed. tagreg is restored using tagregfiz (generated in Branch unit). brdepth is set
to zero because branch instructions are executed In Order (there is no remaining speculative instruction

right after the time a speculative instruction is invalidated).

6 decoder

Decoder is a module used in ID stage. This module use information from incoming instructions to

generates data for later stages (DP, EX, ...). Fig. 7 shows the I/O definition of decoder.



module decoder

(

input wire [31:0] inst,
output reg [‘IMM_TYPE_WIDTH-1:0] imm_type,
output wire [‘REG_SEL-1:0] rsi,
output wire [‘REG_SEL-1:0] rs2,
output wire [‘REG_SEL-1:0] rd,

output reg [‘SRC_A_SEL_WIDTH-1:0] src_a_sel,
output reg [‘SRC_B_SEL_WIDTH-1:0] src_b_sel,

output reg wr_reg,

output reg uses_rsl,

output reg uses_rs2,

output reg illegal_instruction,
output reg [‘ALU_OP_WIDTH-1:0] alu_op,

output reg [‘RS_ENT_SEL-1:0] rs_ent,

output wire [2:0] dmem_size,

output wire [‘MEM_TYPE_WIDTH-1:0] dmem_type,

output reg [‘MD_OP_WIDTH-1:0] md_req_op,

output reg md_req_in_1_signed,
output reg md_req_in_2_signed,
output reg [‘MD_OUT_SEL_WIDTH-1:0] md_reqg_out_sel

);

Fig.7 Decoder module Interface

Below is the explanation of the output singals.

e imm_type: this signal is used in module imm_gen. It indicates the format of immediate data in
the instruction.

e 151, rs2, rd: 1st source operand, 2nd source operand, and destination register number.

e src_a_sel, src_b_sel: used to select ALU operands.

e wr_reg: this signal indicates whether the instruction writes data to destination registers.

e uses.rsl, uses_rs2: valid signals of rsl and rs2. If rsl1/2 is valid, data fetch is needed. These
signals are used to prevent the fetch of unnecessary data (the instruction cannot be issued until
all necessary data are fetched).

o illegal instruction: this signal indicates that the instruction is not defined in this processor. It will
be used in exception handling in the future.

e alu_op: the type ALU operation.

e rs_ent: Reservation Station ID. Each execution unit contains a Reservation Station with an ID
defined as follows:

— ALU: 1

— BRANCH UNIT: 2
— MULTIPLIER: 3
— LOAD/STORE: 4

o dmem size, dmem_type: determine the size of the Load/Store data (4-byte/2-byte/1-byte). These
signals are not used because RIDECORE supports only 4-byte Load/Store instructions.

e md.reqop: the operation type (multiplication or division or modular). This signal is not used




because RIDECORE does not support division and modular operations.

e md _req.in_1_signed, md_req_in_2_signed: these signals indicate whether the 1st and the 2nd source
operand of the multiplier are signed.

e md_reqout_sel: selects hi/lo. In RIDECORE, the output of the multiplier is 64-bit while every
register in ARF and RRF is 32-bit. This signal determines which portion of the output of the

multiplier is selected as the final multiplication result: the upper 32-bit or the lower 32-bit.

10
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7 arf (pp. 239-244)

Each entry of Architected Register File (ARF) consists of a register (Data) updated in COM stage
together with some renaming information (RRFTag, Busy). Fig. 8, 9, 10 show the circuit and behavior
of ARF. Renaming Table contains renaming information. When a branch misprediction occurs, it must
be restored to the state before the prediction. Thus, the number renaming tables is equal to the number
of speculative tags. Below we explain the read and write operations of ARF as well as how Renaming

Table is restored when branch mispredictions occur.

11



Fig. 8 shows the read behavior of ARF. The data in the newest Renaming Table (Black table) is
used as the current renaming information. Fig. 9 shows the write behavior of ARF. Write requests
are generated at DP stage and COM stage. The write enable signal we for the renaming tables is the
complement of the valid vector in Miss Prediction Fiz Table (mpft). For more explanations about mpft,
please read section ”miss_prediction_fix_table”.

Fig. 10 shows the restoration behavior of Renaming Table. The restoration is performed when a branch
instruction is in Branch Unit and the branch condition is calculated. RRFTag and Busy in Renaming
Table are implemented as 32-bit vectors, so it is possible to rewrite all of the entries in one cycle. The
pipeline is stalled while the restoration is in progress because Renaming Table cannot be read correctly.

Fig. 11 shows an example of the restoration behavior. If the prediction of branchl (SpeculativeTag =
5100010) is incorrect, we will have to restore the information of all renaming tables to the state when
SpeculativeTag = 5'b00001. Thus, Fiz Vector is set to 6’b111111 and the red renaming table is selected
as Fiz Data.

On the other hand, if the prediction of branchl is correct, the contents of the backup table (the red
table, Speculative Tag = 5’b00001) will become unnecessary. We overwrite these contents with the
newest information from the black table for backing up the current state. Thus, Fix Vector is set to
6’b010000 and the black renaming table is selected as Fiz Data.

12
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An entry of Renamed Register File (RRF) has two attributes: RRFData and RRFValid. RRFData con-
tains the value of the rename register. RRFValid determines whether the entry is valid. In RIDECORE,
the size of RRF is 64-entry which is the same as the size of Reorder Buffer. In fact, there is one-to-one

correspondence between RRF and Reorder Buffer. Thus, the tag used to access RRF can be also used

to access Reorder Buffer.

9 sourceoperand _manager (pp. 239-244)

sourceoperand_manager generates data to write to Reservation Station (RS) from the requested register
number, the information of ARF and RRF, and the RRFTag of insti. Fig. 12 shows the circuit that

RS Src Value

Register Renaming using ARF and RRF

16




Table 2 Three possible states of a requested register and the data dispatched to Reservation
Station in each case.

ARF.Busy RRF.Valid State Write data to RS
0 * Available in ARF ARF.Data
1 1 Available in RRF RRF.Data
1 0 Not available RRFTag

module sourceoperand_manager
(
input wire [‘DATA_LEN-1:0] arfdata,
input wire arf_busy,
input wire rrf_valid,
input wire [‘RRF_SEL-1:0] rrftag,
input wire [‘DATA_LEN-1:0] rrfdata,
input wire [‘RRF_SEL-1:0] dstl_renamed,

input wire src_eq_dstl,
input wire src_eq_0,
output wire [‘DATA_LEN-1:0] src,

output wire rdy

);

assign src = src_eq_0 ? ‘DATA_LEN’bO
src_eq_dstl 7 dstl_renamed :
“arf_busy 7 arfdata :
rrf_valid ? rrfdata :
rrftag;
assign rdy = src_eq_0 | (“src_eq_dstl & (“arf_busy | rrf_valid));

endmodule // sourceoperand_manager

Fig.13 Source Operand Manager

implements Register Renaming using ARF and RRF.

Table2 shows three possible states of a requested register and the data dispatched to Reservation
Station in each case. Suppose that the requested register is regsrc. Its states in ARF and RRF are
ARF.Busy and RRF.Busy, respectively. ARF.Busy is equal to zero if and only if regsrc is not the
destination register of any outstanding instruction. In this case, the latest value of regsrc is available
in ARF. On the other hand, if ARF.Busy is equal to one, there exists an outstanding instruction with
the destination register regsrc. RRF.Valid determines whether EX stage of this instruction has been
completed. Upon the completion of EX stage, the result is written to RRF and RRF.Valid is set to one.
When RRF.Valid is equal to zero, i.e. the execution of EX stage has not been completed yet, RRFTag
is sent to RS for transferring the latest value of regsrc from RRF to RS later (when all stages of the
instruction with the destination register regsrc are completed).

Fig. 13 shows the source code of sourceoperand_manager. src is the data dispatched to Reservation
Station. src is set to RRFTag when rdy is equal to zero. src is set to zero when the requested register

number is 0 (like MIPS ISA, RISC-V ISA defines a special zero register). When one of the source registers

17
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of inst2 is the destination register of instl (src_eg_dstl is equal to one), src is set to the value of inst’s

RRFTag. Except for these situations, the module operates as described in Table 2.

10 rrf_freelistmanager (pp. 239-244)

Fig. 14 shows the circuit of rrf_freelistmanger which manages free entries of RRF and Reorder Buffer.
There are two registers: FreeNum and RRFPtr. FreeNum stores the number of free entries. RRFPtr is
the current entry number of RRF and Reservation Station.

This circuit assigns RRFTag to instructions in DP stage. When FreeNum is smaller than the number
of instructions requesting to write to Reservation Station, both IF stage and ID stage are stalled since no
instruction can be dispatched. When an instruction is completed in COM stage, the RRFTags used by
this instruction are released. Also, FreeNum is incremented. When a branch misprediction occurs, the
RRFTags of all speculative instructions are also released. To do this, RRFPtris set to rrfTag fix which
is the RRFTag of the next instruction of the branch instruction which caused the branch misprediction.

FreeNum is also restored by using rrfTag fix and comptr from Reorder Buffer.

18



module src_manager

(
input wire [‘DATA_LEN-1:0] opr,
input wire opr_rdy,
input wire [‘DATA_LEN-1:0] exrsltil,
input wire [‘RRF_SEL-1:0] exdstl,
input wire kill_specl,
input wire [‘DATA_LEN-1:0] exrslt?2,
input wire [‘RRF_SEL-1:0] exdst2,
input wire kill_spec2,
input wire [‘DATA_LEN-1:0] exrslt3,
input wire [‘RRF_SEL-1:0] exdst3,
input wire kill_spec3,
input wire [‘DATA_LEN-1:0] exrslt4d,
input wire [‘RRF_SEL-1:0] exdst4,
input wire kill_spec4,
input wire [‘DATA_LEN-1:0] exrslth,
input wire [‘RRF_SEL-1:0] exdstb,
input wire kill_spec5,
output wire [‘DATA_LEN-1:0] src,
output wire resolved
);
assign src = opr_rdy ? opr :
“kill_specl & (exdstl == opr) 7 exrsltl
“kill_spec2 & (exdst2 == opr) 7 exrslt2
“kill_spec3 & (exdst3 == opr) 7?7 exrslt3
“kill_spec4 & (exdst4 == opr) 7?7 exrsltéd
“kill_specb & (exdstb5 == opr) 7 exrsltbh
assign resolved = opr_rdy |
("kill_specl & (exdstl == opr)) |
("kill_spec2 & (exdst2 == opr)) |
("kill_spec3 & (exdst3 == opr)) |
("kill_spec4 & (exdst4 == opr)) |
("kill_spech & (exdst5 == opr));
endmodule // src_manager

opr;

Fig.15 Source Manager

11 src_manager (pp. 256-259)

Fig. 15 shows the source code of sourcemanager in Verilog HDL. This module is used to forward results

in DP stage and to wait for required operands in Reservation Station. Here, we explain its input/output.

e opr: operand in DP stage (sent from sourceoperand-manager to Reservation Station). If opr_rdy is

equal to zero, opr contains RRFTag which generates the required value. Otherwise, opr contains

the requied value.

e opr_rdy: determines what is stored in opr.

o exrslt®, exdst®, kill_spec*: outputs from five execution units (ALU1/2, Load/Store unit, Branch

19




unit, multiplier). When exdsti is equal to opr and both opr_rdy and “kill_spec* are equal to zero,
src is set to exrslti.

e src, resolved: opr, opr_rdy are forwarded to these signals whenever possible.

12 imm_gen, brimm_gen

In RISC-V ISA, some instructions contain immediate values within their operands. imm_gen and
brimm_gen generates 32-bit signed immediate values from decoded data (imm_type) and instruction

data. brimm_gen is used for branch instructions while imm_gen is used for others.
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13 rs_requestgenerator (pp. 254-259)

Reservation Station receives the data of two instructions (instl/2) together with two write enable
signals. The write enable signals are generated by module rs_requestgenerator. Fig. 16 shows the circuit
of this module. The circuit generates Reql/2 (write enable signals for inst1/2) from RSNum1/2 generated
by the decoder.

14 reservation station(rs_*) (pp. 199-203, 254-261)

Reservation Station (RS) is responsible for getting and storing operands of registered instructions.
There is a reservation station for each execution unit. Allocate Unit allocates instructions to the reser-
vation stations. Issue Unit issues instructions from the reservation stations to the execution units.

Fig. 17 shows the I/O of Reservation Station and the interfaces between it and Allocate Unit and Issue
Unit. When Allocate Unit receives write enable signals (wel/2), it looks for free entries in Reservation
Station and generates write addresses (waddrl/2). When there is an instruction in Reservation Station
ready to be executed and the corresponding execution unit is not busy in the next cycle, Issue Unit issues
the instruction to the execution unit. Issue Unit generates the entry number of the instruction (raddr)
and Reservation Station outputs data (rdata) to the execution unit. More in-depth explanations of the
allocate/issue operations can be found in the next section (Allocate Unit and Issue Unit).

Fig. 18 shows the circuit of an entry in Reservation Station. Orange colored squares indicate regis-
ters. Write data is the data needed to execute the registered instructions (operands, opcode, RRFTag,
etc.). Execution results are forwarded to two registers Oprl and Opr2 via Src Managers. Below is the

explanation of the registers in Reservation Station.
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Fig.17 Reservation Station (with Allocate Unit and Issue Unit)

e Oprl, Opr2: the 1st and 2nd register operands. These data have different meanings depending on
the valid bits.
— Valid1/2 = 1: Opr1/2is ready. Validl/2 also becomes 1 when the instruction does not use
Oprl/2.
— Valid1/2 = 0: Opri/2 is still not ready for executing the instruction. In this case, Oprl/2
contains the RRFTag that generates the required operand.
e Busy: determines whether the instruction is registered.
e Other Data: other data needed to execute the instruction.
— imm: immediate value.
— rrftag: RRFTag.
— dstval: determines whether the instruction needs to write data to ARF.
— specbit, spectag: specbit determines whether the instrucion is speculative while spectag con-

tains the allocated Speculative Tag of the instruction.
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Table 3 Allocate Pattern

Reql Req2 | waddrl waddr2
0 0 * *
0 Free_entl *
0 1 * Free_entl
1 1 Free_entl Free_ent2

15 Allocate Unit and Issue Unit (pp. 254-261)

15.1 OQut-of-Order Issue

Fig. 19 shows the circuit of Allocate Unit.

Destination, etc...

Fig. 20 shows the circuit of RS Free Entry Finder

used in Allocate Unit. Allocate Unit behaves like an address resolver for Reservation Station. First,

Allocate Unit receives write requests Reql /2 to Reservation Station. Then, the unit looks for free entries

(Free_ent1/2) in Reservation Station by using RS Free Entry Finder and writes instruction data to the

found free entries.
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Fig.19 Allocate Unit

The interface of Reservation Station in RIDECORE is the same as a four-port memory (two read ports
and two write ports). wdatal/2, waddrl/2, and wel/2 are the write data, write addresses, and write
enable signals, respectively. Table 3 shows how waddrl and waddr! are determined.

RS Free Entry Finder looks for up to two free entries by using two priority encoders. The inputs of the
1st priority encoder is the negation of the busy vector from Reservation Station ( “Busy0- "BusyN-1). To
avoid selecting the free entry already selected by the 1st priority encoder, the inputs of the 2nd priority
encoder are masked by Mask Unit. Entry_enl/2 determines whether Free_entl/2 is valid. allocatable
becomes 1 when Entry_enl + Entry_en2 is not smaller Reql 4+ Req?2.

Issue Unit selects an instruction which has all the necessary operands and issues to EX stage. When
an instruction is issued, it is removed from Reservation Station immediately. We use the Oldest First
algorithm to select an instruction to issue. Fig. 21 shows the minimum value selection circuit (called
oldest finder in RIDECORE) to realize the Oldest First algorithm.

Fig. 22 shows the format of an entry in oldest finder. The MSB of the entry is “rdy because Issue Unit
must prioritize instructions that have all the necessary operands. Since RRFTag is assigned from 0 and

increases as time goes on, we can select the oldest instruction by comparing RRFTags. However, this is
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Fig.21 Minimum Selection (Oldest Finder)

not true when RRFTag overflows. Thus, as shown in Fig. 22, we insert a sorting bit between the MSB
and RRFTag. When an instruction is dispatched to Reservation Station, its sorting bit is set. When
RRFTag overflows, the sorting bits of all instructions in Reservation Station are cleared. By this way,
Issue Unit can basically select the oldest instruction which has all the necessary operands. However,
there is a limitation. In RIDECORE, up to two instructions can be dispatched to Reservation Station
in one clock cycle. Thus, when the RRFTags of two instructions are 63 and 0 (since RRFTag is 6-bit,
it overflows after becoming 63), the sorting bit of the instruction with RRFTag=0 is also cleared. This

means that Issue Unit does not strictly realize the Oldest First algorithm.
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Fig.24 IssuePtr Calculation

15.2 In-Order Issue

Fig. 23 shows the circuit of alloc_issue_ino which uses Reservation Station as a FIFO buffer and realizes
in-order execution. There is only one register AllocPtr in this circuit. IssuePtr points to the instruction

which will be issued next, and is calculated from the busy vector in Reservation Station and register
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Fig.25 AllocPtr Re-calculation

AllocPtr. Fig. 24 shows how IssuePtris calculated. b0/1, e0/1in the figure are calculated by search_begin
and search_end (described later), respectively. b0/1 is the entry number of the first zero/one-entry, while
e0/1 is the entry number of the last zero/one-entry, in the busy vector. There are three patterns of the

busy vector.

e Pattern 1: all entries of the busy vector are equal to one. In this case, IssuePtr is set to AllocPtr.
e Pattern 2: b0 and €0 lie between bl and el. In this case, IssuePtr is set to e0 + 1.
e Pattern 3: bl and el lie between b0 and e0. In this case, IssuePtr is set to bl.

When a branch misprediction occurs, AllocPtr must be recalculated since some speculative instructions
in Reservation Station are invalidated. AllocPtr is recalculated based on Prbusyvector_next which is the

busy vector after the invalidation. This recalculation is almost the same as the calculation of IssuePtr.

15.3 search_begin, search_end

Both search_begin and search_end are implemented as priority encoders. However, search_begin prior-
itizes lower bits while search_end prioritizes higher bits. These modules are used in alloc_issue_ino and

storebuf to perform in-order execution.

16 exection unit(exunit_*) (pp. 203-206)

RIDECORE has five execution units: two ALUs, a multiplier, a load/store unit, and a branch unit).
Fig. 26, Fig. 27, and Fig. 28 show the circuits of these execution units. Fig. 29 shows the circuit
of "Kill Gen” used in Fig. 26, Fig. 27, and Fig. 28. When a branch misprediction occurs, Kill Gen

determines whether to invalidate the instructions currently being executed in the execution units. You
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can understand this circuit by reading the section of Miss Prediction Fix Table. In RIDECORE, each
multiplication operation takes one clock cycle. The multiplier circuit is thus almost the same as ALU.

When an execution unit finishes executing an instruction, it notifies the completion (ROB WE) to
Reorder Buffer and writes data (RRF Write Addr/Data) to RRF. In addition to these basic operations,
Load/Store Unit and Branch Unit perform some additional operations described below.

The operation of Load/Store Unit is pipelined with two stages. When this unit receives a Load
instruction from Reservation Station, it accesses to DMEM and Store Buffer and receives data from
Store Buffer in the 1st stage. In the 2nd stage, it receives data from DMEM and write data (data from
Store Buffer if there is any data which has not been stored to DMEM yet; otherwise data from DMEM)
to RRF.

When Load/Store Unit receives a Store instruction, it writes store data and store address to Store
Buffer in the 1st stage and notifies the completion to Reorder Buffer in the 2nd stage. Once the store
instruction finishes its COM stage, the store data in Store Buffer can be written to DMEM. Data in
Store Buffer is written to DMEM whenever there is no Load instruction accessing to DMEM.

Branch Unit calculates branch target and compares it to the branch target predicted in IF stage. If a
branch prediction is correct, we update Miss Prediction Fix Table and clear Speculative bit that matches
Speculative Tag. On the other hand, if a branch misprediction occurs, we restore processor’s state to

the state before performing the branch prediction. In both cases, the pipeline is stalled (for backing up
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Fig.27 Load/Store Unit

or restoring). In COM stage, to notify the completion of a branch instruction to the branch predictor,
we need information of this instruction. Thus, Branch Unit writes branch target and branch condition to
Reorder Buffer.

29



ALU_OP srcl src2 rrfTag | brimm PC
opcode \l/ \
Address
calculator praddr +4
Compare
Equal? J o RRFWrite
Jal|Jalr?1:in Data
RRF Write
PC To ROB Addr
Taken/Untaken :
True jmp Addr
Tag reg Miss'Prediction
fix Fix Table
Rotate Right 1
Speculative
PrTag Tag
Speculative fix Tag
————> ROB WE
PrMiss Q—@( d |
stva RRF WE
PrSuccess .—(}‘
L Signal Enable busy Issue?(Next busy=0)

Kill_speculative

pd

Fig.28 Branch Unit

<——  PrMiss

To issue unit

—
—

Speculative bit

1=0? AND [<— Speculative Tag

)

Speculative fix Tag

Fig.29 Kill Gen

30



Index Valid | Completed Addr Data Spechit Spectag
0 0 0
Retptr 1 1 1 0x120 5 0 00001
2 1 1 0x124 25 0 00001
Comptr 3 1 0 0x128 125 1 00010
Finptr 4 0 0
29 0 0
30 0 0
31 0 0

Fig.30 Store Buffer

17 storebuf (pp. 206-209, 262-273)

Store Buffer contains store data and store address of store instructions that have completed their EX
stages. The store data of a store instruction can be transferred from Store Buffer to DMEM once the
instruction finishes its COM stage. Store Buffer is an associative memory. When a load instruction gives
a load address to Store Buffer, it returns the latest unstored data to the load instruction. The latest
unstored data can be easily selected by rotating load address hit Vector. Fig. 30 shows the entries and
registers of Store Buffer. There are three registers: Finptr, Comptr, and Retptr. Finptr is a pointer to
finished instructions. Comptris a pointer to completed instructions. Finally, Retptr points to instructions
whose store data has been written to DMEM. When a branch misprediction occurs, comptr and retptr
only need to be incremented, but finptr needs to be recalculated in the same way that alloc_issue_ino is
recalculated.

Below is the explanation of the attributes of each entry in Store Buffer.

e valid: determines whether the entry is valid.

e completed: determine whether the instruction is completed. Once both valid and completed are
equal to one, the instruction is ready to be retired.

e addr, data: data and address to write to DMEM.

e spechit, spectag: specbit determines whether the instrucion is speculative. spectag contains Specu-
lative Tag. These information is required to invalidate the instruction when the branch prediction

is not correct.

18 miss_prediction_fix_table (pp. 228-231)

Miss Prediction Fix Table stores states of Speculative Tags. The state of a Speculative Tag is defined
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Fig.32 Reorder Buffer

by two values: Valid and Value. Valid determines whether the instruction having this Speculative Tag is a

speculative instruction. Value shows the dependency between this Speculative Tag and other Speculative

Tags.

Next, we use a specific example (Fig. 31) to explain Miss Prediction Fiz Table. Fig. 31 shows

the instruction flow and the state of Miss Prediction Fix Table after decoding two branch instructions.

Speculative Tags are assigned to the instructions by Speculative Tag Generator in the order of 00001,
00010, ..., 10000. When the prediction of branchi turns out to be incorrect, we read the Value of
index 00010 (branchl’s Speculative Tag) in Miss Prediction Fix Table. The Value is 00110. Then, the
instructions to be invalidated are the ones with Speculative Tags 00010 and 00100.

Vi € Instructions (((i.SpeculativeTag & Value) ! =0) — i is invalidated)
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19 reorderbuf (pp. 206-209, 254-259)

Reorder Buffer is a buffer which allows instructions to be committed in-order. Fig. 32 shows the entries
and registers of Reorder Buffer. comptris a pointer which points to the instruction to be completed next.
dispatchptr, which is equal to RRFPtr in rrf_freelistmanager, is a pointer to the entry whose instruction
will be dispatched next. Reorder Buffer can complete at most two instructions per clock cycle. However,
branch instructions and store instructions are completed one by one to reduce the number of write ports
of memories in the Branch Predictor and Store Buffer.

When an instruction is completed, Renaming Table is updated and the execution result of the in-
struction written in RRF is copied to ARF. Busy in Renaming Table is cleared only when RRFTag of
Renaming Table is equal to that of the completed instruction.

Below is the explanation of the attributes of each entry in Reorder Buffer.

e finish: indicates whether the instruction has been finished. It is cleared when the instruction is
dispatched and set when the instruction is finished.

e storebit: indicates whether the instruction is a store instruction. If storebit is equal to one (i.e.
store instruction), it is necessary to notify the completion of the instruction to Store Buffer.

e dstvalid: indicates whether the destination register of the instruction is valid, i.e. whether the
instruction needs to write data to ARF.

e dst: destination register number.

e isbranch: determines whether the instruction is a branch instruction. If isbranch is equal to one
(i.e. branch instruction), we have to write data to Branch Predictor (PHT, BTB, etc.) upon the
completion of the instruction.

e inst_pc, jmpaddr, brcond, bhr: data to Branch Predictor. inst_pc, jmpaddr, brcond, bhr are
the instruction address, branch target, branch condition, and bhr (for calculating PHT’s write

address), respectively.
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