
Pizza.py Users Manual
Pizza.py Toolkit

http://www.sandia.gov/~sjplimp/pizza.html − Sandia National Laboratories
Copyright (2005) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

Table of Contents
Pizza.py Documentation..1

Version info:..1
1. Introduction..3

1.1 What is Pizza.py..3
1.2 Open source distribution..3
1.3 Acknowledgements...4

2. Installing Pizza.py..5
Installing Python..5
Running Pizza.py...6
Setting up the DEFAULTS.py file..7
Installing additional Python packages...7
Numeric or Numpy..8
pexpect...8
PIL...8
Pmw...9
PyOpenGL...9
readline..10
Tkinter...10
Installing other software..11
ImageMagick display, convert, montage commands..11
GnuPlot..11
Gunzip...11
Label3d..11
MatLab..11
RasMol..11
Render..12
VMD..12

3. Basics of using Pizza.py...13
3.1 Python syntax..13
3.2 Pizza.py command line arguments..13
3.3 Pizza.py extensions to the Python interpreter..14
3.4 Using Pizza.py tools..14
3.5 Running Pizza.py and Python scripts..15
3.6 Error messages...17

4. Tools within Pizza.py...18
5. Example scripts..20
6. Extending Pizza.py...21
animate tool..23
bdump tool...24
cdata tool..26
cfg tool...30
chain tool..31
clog tool..33
data tool..34
dump tool...36
ensight tool...40
gl tool...41
gnu tool..44

Pizza.py Users Manual

i

Table of Contents
histo tool...46
image tool...47
ldump tool..49
log tool...51
matlab tool..52
mdump tool..54
pair tool..59
patch tool..60
pdbfile tool...62
plotview tool..64
rasmol tool..65
raster tool..67
svg tool...70
tdump tool..73
vcr tool...75
vec tool...77
vmd tool...78
vtk tool...79
xyz tool...80

Pizza.py Users Manual

ii

Pizza.py Documentation

Version info:

The Pizza.py "version" is the date when it was released, such as 1 May 2010. Pizza.py is updated continuously.
Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of the WWW
site. Each dated copy of Pizza.py contains all the features and bug−fixes up to and including that version date.
The version date is printed to the screen and logfile every time you run Pizza.py. It is also in the file src/version.h
and in the Pizza.py directory name created when you unpack a tarball.

If you browse the HTML or PDF doc pages on the Pizza.py WWW site, they always describe the most
current version of Pizza.py.

•

If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.•

Pizza.py is a loosely integrated collection of tools written in Python, many of which provide pre− and
post−processing capability for the LAMMPS molecular dynamics and ChemCell cell simulator packages. There
are tools to create input files, convert between file formats, process log and dump files, create plots, and visualize
and animate simulation snapshots.

The name Pizza.py is meant to evoke the aroma of a collection of "toppings" that the user can combine in
different ways on a "crust" of basic functionality, with Python as the "cheese" that glues everything together.

The maintainer of Pizza.py is Steve Plimpton at Sandia National Laboratories, a US Department of Energy (DOE)
laboratory. Many of the tools were written by Matt Jones, a BYU student who spent a summer at Sandia. The
Pizza.py WWW Site at www.cs.sandia.gov/~sjplimp/pizza.html has more information about Pizza.py and its uses.

The Pizza.py documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to sjplimp@sandia.gov so we can
improve the Pizza.py documentation.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is Pizza.py
1.2 Open source distribution
1.3 Acknowledgements

1.

Installing Pizza.py
2.1 Installing Python
2.2 Running Pizza.py
2.3 Setting up the DEFAULTS.py file
2.4 Installing additional Python packages
2.5 Installing other software

2.

Basics of using Pizza.py
3.1 Python syntax
3.2 Pizza.py command line arguments
3.3 Pizza.py extensions to the Python interpreter
3.4 Using Pizza.py tools
3.5 Runnning Pizza.py and Python scripts
3.6 Error messages

3.

Tools within Pizza.py4.
Example scripts5.
Extending Pizza.py6.

1

http://www.cs.sandia.gov/pizza/bug.html
http://www.cs.sandia.gov/pizza/bug.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp
http://www.sandia.gov
http://www.doe.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.easysw.com/htmldoc

List of tools in Pizza.py:

animate.py Animate a series of image files

bdump.py Read LAMMPS dump local files with bond info

cdata.py Read, write, manipulate ChemCell data files

chain.py Create bead−spring chains for LAMMPS input

cfg.py Convert LAMMPS snapshots to CFG format

clog.py Read ChemCell log files and extract species data

data.py Read, write, manipulate LAMMPS data files

dump.py
Read, write, manipulate dump files and particle
attributes

ensight.py Convert LAMMPS snapshots to Ensight format

gl.py 3d interactive visualization via OpenGL

gnu.py Create plots via GnuPlot plotting program

histo.py Particle density histogram from a dump

image.py View and manipulate images

ldump.py Read LAMMPS dump files with line info

log.py
Read LAMMPS log files and extract thermodynamic
data

matlab.py Create plots via MatLab numerical analysis program

mdump.py Read, write, manipulate mesh dump files

pair.py Compute LAMMPS pairwise energies

patch.py
Create patchy Lennard−Jones particles for
LAMMPS input

pdbfile.py
Read, write PDB files in combo with LAMMPS
snapshots

plotview.py Plot multiple vectors from a data set

rasmol.py 3d visualization via RasMol program

raster.py 3d visualization via Raster3d program

svg.py 3d visualization via SVG files

tdump.py Read LAMMPS dump files with triangle info

vcr.py
VCR−style GUI for 3d interactive OpenGL
visualization

vec.py
Create numeric vectors from columns in file or list
of vecs

vtk.py Convert LAMMPS snapshots to VTK format

vmd.py Wrapper on VMD visualization package

xyz.py Convert LAMMPS snapshots to XYZ format

2

http://www.cs.sandia.gov/~sjplimp/chemcell.html
http://www.cs.sandia.gov/~sjplimp/chemcell.html
http://www.ensight.com
http://www.gnuplot.info
http://www.mathworks.com
http://www.openrasmol.org
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.w3.org/Graphics/SVG
http://www.ks.uiuc.edu/Research/vmd

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

1. Introduction

These sections describe what Pizza.py is, what it means to be open−source software, and acknowledge the
funding and people who have contributed to Pizza.py.

1.1 What is Pizza.Py
1.2 Open source distribution
1.3 Acknowledgements

1.1 What is Pizza.py

Pizza.py is a loosely integrated collection of tools, many of which provide pre− and post−processing capabilities
for the LAMMPS molecular dynamics and ChemCell cell simulator packages.

There are tools to create input files, convert between file formats to connect to other codes, process log and dump
files, plot output, and visualize and animate simulation snapshots.

Python is used in Pizza.py in 3 ways:

to provide an interactive and scripting interface to the tools•
as a language for writing tools•
to wrap existing stand−alone codes•

Python makes it easy for users of Pizza.py to:

experiment with tools interactively•
automate tasks as script files of commands•
extend tools or create new ones•

The topmost level of Pizza.py adds a modest bit of functionality to the Python interpreter to make it easier to
invoke tools and pass data between them. As such, Python is an ideal "framework" or "glue" language that
enables various tools to be hooked together, while also providing a rich programming environment of its own.

1.2 Open source distribution

Pizza.py comes with no warranty of any kind. As each source file states in its header, it is distributed
free−of−charge, under the terms of the GNU Public License (GPL). This is often referred to as open−source
distribution − see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is in the
LICENSE file that is included in the Pizza.py distribution.

Here is a summary of what the GPL means for Pizza.py users:

(1) Anyone is free to use, modify, or extend Pizza.py in any way they choose, including for commercial purposes.

(2) If you distribute a modified version of Pizza.py, it must remain open−source, meaning you distribute it under
the terms of the GPL. You should clearly annotate such a code as a derivative version of Pizza.py.

3

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/chemcell.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

(3) If you release any code that includes Pizza.py source code, then it must also be open−sourced, meaning you
distribute it under the terms of the GPL.

(4) If you give Pizza.py to someone else, the GPL LICENSE file and source file headers (including the GPL
notices) should remain part of the code.

In the spirit of an open−source code, these are various ways you can contribute to making Pizza.py better. You
can send email to sjplimp@sandia.gov on any of these items.

If you write a Pizza.py script that is generally useful or illustrates how to do something cool with
Pizza.py, it can be added to the Pizza.py distribution. Ditto for a picture or movie that can be added to the
Pizza.py WWW site.

•

If you add a new method to one of the tools or create a new tool that is useful for Pizza.py or LAMMPS
or ChemCell users, it can be added to the Pizza.py distribution. See the ToDo list at the beginning of the
src/*.py files for features that haven't yet been implemented.

•

If you find a bug, report it.•
Report if you find an error or omission in the Pizza.py documentation or on the Pizza.py WWW Site, or
have a suggestion for something to clarify or include.

•

Point prospective users to the Pizza.py WWW Site or link to it from your WWW site.•

1.3 Acknowledgements

Pizza.py has been developed at Sandia National Laboratories which is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear
Security Administration under contract DE−AC04−94AL85000.

Funding for Pizza.py development has come from the US Department of Energy (DOE), through its LDRD and
Genomes−to−Life programs. The latter effort has been funded by DOE's OASCR and OBER offices as part of the
US Department of Energy's Genomics:GTL program (www.doegenomestolife.org) under the project, "Carbon
Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling".

The maintainer of Pizza.py is Steve Plimpton.

Matt Jones, a BYU student who was a summer intern at Sandia, wrote several of the coolest tools in Pizza.py and
about half the code in the initial version.

Others who have written tools or scripts that are part of the Pizza.py distribution are listed on the Pizza.py WWW
site.

4

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://www.cs.sandia.gov/~sjplimp
http://www.cs.sandia.gov/~sjplimp/pizza/thanks.html
http://www.cs.sandia.gov/~sjplimp/pizza/thanks.html

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

2. Installing Pizza.py

Unpack the Pizza.py distribution by typing the following:

gunzip pizza.tar.gz
tar xvf pizza.tar

The Pizza.py main directory should then contain the following directories:

README initial instructions

LICENSE the GNU open−source license

doc HTML documentation for Pizza.py

examples
scripts and data sets that exercise Pizza.py
tools

scripts various Pizza.py script files

src source code for Pizza.py and its tools
Because Python is an interpreted language, there is no need to compile or "make" Pizza.py. You run Pizza.py by
executing the src/pizza.py file directly, as described below. However there are 3 issues to consider: (a) you must
have Python installed on your machine, (b) some Pizza.py tools require your Python to be extended with
additional Python packages, and (c) some Pizza.py tools are wrappers on other software which needs to be
available on your system.

If you don't plan to use a particular Pizza.py tool, you don't need to install additional Python packages or other
software it requires.

2.1 Installing Python
2.2 Running Pizza.py
2.3 Setting up the DEFAULTS.py file
2.4 Installing additional Python packages
2.5 Installing other software

Note that we cannot provide help on installing the various software packages described here. If you have
problems, you'll need to talk to a local expert who can help you with your machine. If you find that instructions on
this page are incorrect or incomplete or you can provide a better description of the install procedure, please send
an email to sjplimp@sandia.gov.

Installing Python

Python is open−source software available for Unix, Macintosh, and Windows machines. If you have a Linux box
or Mac it is probably already installed. If the python executable is in your path, typing "python" should give you a
Python prompt ">>>" and tell you what version you are running. Version 2.4 or newer is sufficiently current to
run Pizza.py, though older versions may work as well.

If Python is not installed on your machine, go to www.python.org to download a binary or source−code version
and then build and/or install it.

On my Linux box, this was as easy as

./configure; make; sudo make install

5

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org

To use the Pizza.py tools that have GUIs, you need to insure your Python supports Tcl/Tk via the Tkinter module.
This is the case if you can type the following from your Python prompt:

>>> import Tkinter
>>> Tkinter._test()

If this fails, see further instructions below for Tkinter.

IMPORTANT NOTE: If you are installing a new version of Python, read the Tkinter section first, since it
describes how to make sure the Tcl/Tk and Togl libraries are installed. If you want to use the Pizza.py tools that
require them, you need to do this step first before building Python.

Running Pizza.py

Typically Pizza.py should be run from the directory where your LAMMPS or other data files are. Like any
Python program, Pizza.py can be run in one of 2 ways, by typing either

python −i ~/pizza/src/pizza.py
~/pizza/src/pizza.py

where the last argument is the full pathname of the pizza.py file.

The −i switch leaves Python in interactive mode (instead of exiting) after the pizza.py script is run. In the 2nd
case, if the src dir is in your path, just pizza.py could be typed. For the 2nd case, you must also set src/pizza.py to
be an executable file (chmod +x pizza.py) and edit the 1st line of pizza.py to reflect where Python lives on your
system (find it by typing "which python"), e.g.

#!/usr/local/bin/python −i

Putting a definition like one of the following in your .cshrc file (or equivalent syntax for other Unix shell start−up
files) will let you simply type "pizza" at the command−line to start Pizza.py.

alias pizza python −i ~/pizza/src/pizza.py alias pizza ~/pizza/src/pizza.py

Pizza.py accepts several command−line options; they are described in this section of the documentation.

When Pizza.py starts, it reads a few values from the src/DEFAULTS.py file (described below) and imports the
*.py files from the src directory as Python modules. These are the Pizza.py tools. Error messages will be printed if
your Python has not been extended with a Python package that a tool requires. If you don't plan to use the tool you
can ignore the message, or exclude that tool via the command−line switch "−x".

Once all tools have been loaded and any initial scripts and commands have been run (via command−line
arguments) you should see the Pizza.py ">" prompt. From this point on, everything you type is a Python
command. Python interprets what you type, operates on your data, and produces output or error messages, just as
if you were typing in response to Python's interactive prompt ">>>".

You can also type special commands that have been added to the Python interpreter by Pizza.py or commands that
invoke Pizza.py tools. More details about these options are explained in this section of the documentation.

As with Python, type Ctrl−D to exit Pizza.py at any time.

6

Setting up the DEFAULTS.py file

When Pizza.py starts it reads 3 values from the src/DEFAULTS.py file:

PIZZA_TOOLS directories that contain additional Pizza.py tools

PIZZA_SCRIPTS directories that contain additional Pizza.py scripts

PIZZA_EXCLUDE Python files that are not loaded, since they are not tools
These are designed to allow users to augment Pizza.py with their own tools and scripts, which need not be stored
in the directories of the Pizza.py pacakge. Follow the instructions in the DEFAULTS.py file for using these
options.

The DEFAULTS.py files also contains various variables that specify the name and path of programs that Pizza.py
tools will execute on your system. In some cases the variables contain settings that are used by these programs.
Read the comments in the DEFAULTS.py file for more information.

The following table lists the keywords in the DEFAULTS.py, the program or setting that will be used by default if
the keyword line is commented out, and the Pizza.py tools that use the keyword. If the program is not in your path
or you wish to use an alternate program or setting, you must edit the DEFAULTS.py file accordingly. If you don't
plan to use any tool that needs the keyword, you can ignore its setting.

Keyword Default Value Purpose
Tools that
Use it

DISPLAY display display image files (ImageMagick)
rasmol,
raster, svg

CONVERT convert convert image files (ImageMagick) image

MONTAGE montage montage image files (ImageMagick) image

GNUPLOT gnuplot Gnu Plotting package gnu

GNUTERM x11 GnuPlot terminal gnu

GUNZIP gunzip unzip a compressed *.gz file dump, log

LABEL3D label3d put a label on a Raster3D image raster

MATLAB matlab MatLab numerical analysis &plotting package matlab

RASMOL rasmol RasMol molecular vizualization package rasmol

RENDER render Raster3D vizualization rendering engine raster

VMDNAME vmd VMD visualization package vmd

VMDDIR /usr/local/lib/vmd VMD visualization package vmd

VMDDEV win VMD visualization package vmd

VMDARCH LINUX VMD visualization package vmd

Installing additional Python packages

This is the list of extra Python packages various Pizza.py tools require. If a tool is not listed it requires no extra
packages. Instructions on where to find the Python extensions and how to install them are listed below.

Package Tools that Use it

Numeric or Numpy
dump, mdump, bdump, ldump,
tdump

pexpect vmd

7

PIL animate, gl, image

Pmw image

PyOpenGL gl, vcr

readline Pizza.py itself

Tkinter animate, image, plotview, vcr

Numeric or Numpy

Numeric and its follow−on NumPy enables Python to process vectors and arrays of numbers efficiently, both in
terms of memory and CPU speed. It's an extremely useful extension to have in your Python if you do any
numerical work on large data sets. Pizza.py can use either Numeric or NumPy.

If Numeric or NumPy is already installed in your Python, you should be able to type one of the following without
getting an error:

>>> import Numeric
>>> import numpy

Numeric can be downloaded from this site on SourceForge and NumPy from this site. Numeric version 24.2 is
fine for Pizza.py as is a current version of NumPy. Once unpacked, you can type the following from the Numeric
or NumPy directories to install it in your Python.

sudo python setup.py install

Note: on my Linux box, when Numeric installed itself under the Python lib in /usr/local, it did not set all file
permsissions correctly to allow a user to import it. So I also needed to do this:

sudo chmod −R 755 /usr/local/lib/python2.5/site−packages/Numeric

pexpect

Pexpect in a pure Python implementation of the Expect capability of the Tcl language. It allows Python to send
commands to another program, and handshake the interaction between them, one command at a time.

If pexpect is already installed in your Python, you should be able to type the following without getting an error:

>>> import pexpect

Pexpect can be downloaded from this site. As of Nov 2010, Version 2.4 is fine. On my Linux box, this command
installed it:

sudo python setup.py install

PIL

The PIL (Python Imaging Library) allows Python to read image files, manipulate them, and convert between
several common image formats.

If PIL is already installed in your Python, you should be able to type the following without getting an error:

>>> import Image,ImageTk

8

http://numeric.scipy.org
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=1351
http://numeric.scipy.org
http://pypi.python.org/pypi/pexpect
http://pypi.python.org/pypi/pexpect
http://www.pythonware.com/products/pil

PIL can be downloaded from this site. As of July 2007, Version 1.1.6 is fine. On my Linux box, this command
installed it:

sudo python setup.py install

with a notice that Tkinter and ZLIB (PNG) support were enabled. If you want the Pizza.py tools to recognize
other image formats (e.g. JPEG), then look at the README for further details, if the PIL build did not find the
correct libraries.

Pmw

Pmw (Python mega−widgets) is a common Tkinter extension that provides a host of more powerful GUI widgets.

If Pmw is already installed in your Python, you should be able to type the following without getting an error:

>>> import Pmw

Pmw can be downloaded from this site. As of July 2007, Version 1.2 is fine. Pmw is installed by putting its files
in your Python's site−packages directory. After unpacking the tarball and naming the resulting dir "pmw", I
installed it on my Linux box as follows:

sudo cp −r pmw /usr/local/lib/python2.5/site−packages/Pmw
sudo chmod −R 755 /usr/local/lib/python2.5/site−packages/Pmw

PyOpenGL

The PyOpenGL package is a wrapper on the ubiquitous OpenGL graphics library and allows a Python program to
make graphics calls in standard OpenGL syntax. It also includes Togl support for opening a Tk OpenGL widget,
assuming your Python has Tkinter intstalled and that Tkinter was built with Togl (read on!). The Pizza.py tools
that use PyOpenGL require this capability.

If PyOpenGL is already installed in your Python, you should be able to type the following without getting an
error:

>>> import OpenGL

If your PyOpenGL supports Togl, you should be able to type the following without getting an error:

>>> from OpenGL.Tk import *
>>> from OpenGL.GLUT import *

PyOpenGL can be downloaded from this site on SourceForge. You want the latest PyOpenGL release (not
OpenGLContext). As of July 2007, Version 3.0.0a6 is what I used.

IMPORTANT NOTE: I had many problems installing earlier versions of PyOpenGL on various boxes. But the
3.0 release was much easier to install on my Linux box, as outlined here. Note that version 3.0 requires Python 2.4
or later.

IMPORTANT NOTE #2: By default, your Python may or may not have Tkinter installed. Even if Tkinter is
installed, it probably was not built with Togl. If this is the case, you should install them first before installing
PyOpenGl, otherwise you will still get errors when you try to use the Pizza.py tools that use PyOpenGL, because
they require Tkinter and Togl. See the Tkinter section below for instructions on installing Tkinter and Togl in
your Python.

9

http://effbot.org/zone/pil-index.htm
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pyopengl.sourceforge.net
http://pyopengl.sourceforge.net

Installing 3.0 version of PyOpenGL requires the setuptools package be part of your Python. As of July 2007, it
can be downloaded from this site. It is a single file, ez_setup.py, which can be installed in your Python by typing:

sudo python ez_setup.py

Once setuptools and Tkinter and Togl are in place, installing PyOpenGL on my Linux box was as simple as:

sudo python setup.py install

readline

The readline library is part of Python but is not supported on all systems. If it works in your Python, then Pizza.py
(and Python) prompts are more shell−like and should support arrow keys, Emacs−style editing, command history,
etc. If you get an error "No module named readline" when Pizza.py starts up, you can ignore it, or comment out
the line "import readline" in src/pizza.py.

If readline is already installed in your Python, you should be able to type the following without getting an error:

>>> import readline

The readline library can be downloaded from this site. After building the library, I believe you then have to
rebuild Python itself.

Tkinter

The Tkinter package is part of Python but is not always enabled when Python is built, typically due to not finding
the Tcl/Tk libraries. If you can type the following without an error message in your Python, then Tkinter is
operational in your Python:

>>> import Tkinter
>>> Tkinter._test()

If this fails, you need to rebuild Python and either insure it finds the Tcl/Tk libraries or build those libraries first
as described here. Since I wanted a more current Python then was installed with Linux on my box, I download the
latest Python (Python 2.5.1 as of July 2007) and installed it under /usr/local.

IMPORTANT NOTE: If you want to use any of the Pizza.py tools that use PyOpenGL, you also need the Togl
library. You should install it before building the Tcl/Tk libraries which you then build before re−building Python,
as described here. Unfortunately, if Tkinter is already in your Python but without Togl support, I think you need
to go thru these 3 steps in order.

(1) To intstall Togl, download it from this site on SourceForge. As of July 2007, Version 1.7 is fine.

After unpacking the tarball, installing it on my Linux box was as simple as:

./configure; make; sudo make install

(2) To build Tck/Tk libraries with Togl support, go to this site on SourceForce to download the latest versions of
Tcl and Tk.

As of July 2007, I was unable to build version 8.4.15 on my Redhat Linux box due to an odd error, but 8.4.7 built
fine. After unpacking the two tarballs I did the following:

10

http://peak.telecommunity.com/DevCenter/setuptools
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html#Availability
http://togl.sourceforge.net
http://sourceforge.net/project/showfiles.php?group_id=10894

cd tcl8.4.7/unix
./configure; make; sudo make install
cd tk8.4.7/unix
./configure; make; sudo make install

This build should find the Togl library previously installed under /usr/local.

(3) Now you can re−build Python and it should find the correct Tcl/Tk libraries under /usr/local. Note that when
you run ./configure as the first step in building Python, it will tell you what it found for Tcl/Tk.

Installing other software

Some Pizza.py tools invoke other software which must be installed on your system for the tool to work. This is an
alphabetic list of the needed software. Except where noted, it is freely available for download on the WWW. The
Pizza.py tools that use this software are listed above in this section. To see if you already have the software on
your box, type "which command", e.g. "which display".

ImageMagick display, convert, montage commands

Several Pizza.py tools display image files. The ImageMagick "display" program can be used for this purpose.
Likewise, the ImageMagick "convert" and "montage" comands are used by the image tool. The ImageMagick
toolkit can be downloaded from this site and contains a variety of useful image conversion and manipulation
software.

GnuPlot

The Pizza.py gnu tool is a wrapper on the open−source GnuPlot program. GnuPlot can be downloaded from this
site.

Gunzip

Gunzip is invoked by Python to read compressed (*.gz) data and dump files. It is almost certainly on your Unix
system. If not if can be downloaded from this site.

Label3d

The Pizza.py tool raster uses the label3d and render programs from the Raster3d visualization package to produce
high−quality ray−traced images. See the description of "Render" below for information about Raster3d.

MatLab

The Pizza.py matlab tool is a wrapper on MatLab which is a widely−used commercial numerical analysis package
that also produces nice plots. Further information is available at the MathWorks WWW site. When MatLab is
installed on your system and the appropriate environment variables are set, the command "matlab" should launch
the program.

RasMol

The Pizza.py rasmol tool invokes the RasMol visualization package to view molecular systems and produce nice
images. RasMol can be downloaded from this site, which is for the original open−source version of RasMol, not
the Protein Explorer derivative version of RasMol.

11

http://www.imagemagick.org/script/index.php
http://www.gnuplot.info
http://www.gnuplot.info
http://www.gnu.org/software/gzip/gzip.html
http://www.mathworks.com
http://www.openrasmol.org

Note that when using RasMol on a Mac, you will need to launch X11 first (or run Pizza.py from an X11 xterm) to
get RasMol to display properly.

Render

The Pizza.py tool raster uses the render and label3d programs from the Raster3d visualization package to produce
high−quality ray−traced images. Raster3d can be downloaded from this site.

For Macs, Raster3d is available for download via Fink as an unstable package.

VMD

The Pizza.py vmd tool is a simple wrapper on the VMD visualization package which is a popular tool for
visualizing the output of molecular dynamics simulations. VMD can be downloaded from this site.

12

http://www.bmsc.washington.edu/raster3d/raster3d.html
http://fink.sourceforge.net/pdb/package.php/raster3d
http://fink.sourceforge.net/faq/usage-fink.php?phpLang=en#unstable
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

3. Basics of using Pizza.py

The previous section describes how to install and run Pizza.py and the various software it uses. After Pizza.py has
started you should see a ">" prompt. The following sections describe what comes next:

3.1 Python syntax
3.2 Pizza.py command line arguments
3.3 Pizza.py extensions to the Python interpreter
3.4 Using Pizza.py tools
3.5 Runnning Pizza.py and Python scripts
3.6 Error messages

3.1 Python syntax

Aside from its tools, Pizza.py itself simply adds a bit of functionality to the Python interpreter to enable it to more
easily launch shell commands and scripts and invoke its tools. Pizza.py's ">" prompt is different from Python's
">>>" prompt to indicate the extra functionality is available, but you can type any Python command you would
type at the Python prompt.

Python is a powerful scripting and programming language, similar in scope and universality to Perl. This little
Pizza.py manual cannot attempt to teach you how to use Python, its syntax, or its rich set of powerful built−in
commands. If you only use the extra tools provided by Pizza.py, you can think of Pizza.py as an application with
a self−contained set of commands. However, if you learn more about Python, you will be able to write more
powerful Pizza.py scripts, access and manipulate data stored inside Pizza.py tools, or even add your own
commands and tools, which need not have anything to do with LAMMPS or ChemCell.

You can learn about Python at www.python.org. My most−used Python book is Essential Python by Dave
Beazley which assumes some programming experience but covers both the basics of Python and its many
powerful libraries in a well−written, concise manner.

3.2 Pizza.py command line arguments

When running Pizza.py, several command−line options can be added as switches, e.g.

pizza.py switch args switch args ...

−s silent (else print start−up help)

−t log dump raster load only these tools

−x raster rasmol load all tools except these

−f file arg1 arg2 run script file with args

−c "vec = range(100)" run Python command

−q quit (else interactive)
Switches can appear in any order and be used multiple times. The −f scripts and −c commands are executed in the
order they appear. Script files are Python files which can contain Python or Pizza.py tool commands. Pizza.py
looks for script files in 3 places: your current working directory, the pizza/scripts directory, and any extra
directories you list in the src/DEFAULTS.py file. This means you can add your own scripts to pizza/scripts or to
directories of your choosing.

13

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.amazon.com/exec/obidos/tg/detail/-/0735709017/104-4868532-2659916?v=glance

The argument of the −c switch will typically need to be enclosed in quotes to avoid being interpreted by the shell.
This also allows multiple Python commands to be separated by semi−colons, e.g.

−c "a = range(100); print a"

3.3 Pizza.py extensions to the Python interpreter

As mentioned above, the standard Python syntax is extended a bit at the Pizza.py ">" interactive prompt. These
options were inspired by the LazyPython.py code of Nathan Gray, which taught me how to extend the Python
interpreter. These are the short−cuts:

? print help message

?? one−line for each tool and script

? raster list tool commands or script syntax

?? energy.py full documentation of tool or script

!ls −l shell command

@cd .. cd to a new directory

@log tmp.log log all commands typed so far to file

@run block.py arg1 arg2 run script file with args

@time d = dump("*.dump") time a command
Shell commands begun with a "!" can include the redirection operators "". The shell command "!cd" will not
change directories permanently; use the "@cd" short−cut instead. Any short−cut command starting with "@" can
be abbreviated with one or more letters. E.g. "@r" is the same as "@run". The @log command requires that the
Python readline library be available on your system.

Each of the above short−cuts can be performed by native Python commands; they are just not as simple to type.
Here is how several of the short−cuts can be written in Python, which is what you need to do in a script, since the
above short−cuts only work at the Pizza.py interactive prompt:

Short−cut Native Python

!ls −l sys.command("ls −l")

@cd .. os.chdir("..")

@run myfile.pyexecfile("myfile.py")

CTRL−D sys.exit()

3.4 Using Pizza.py tools

The tools that Pizza.py adds to Python are each implemented as a single Python class (e.g. dump, log, raster), so
the first step in using a tool is to create an instance of the class (an object). Each class defines a set of methods
(functions) that operate on the objects you create and their associated data. Each method, including the
constructor, takes zero or more arguments, which may be previously created objects. In practical terms, this
means that you type commands like this:

d = dump("dump.*")
p = pdb("my.pdb",d)
p.many()
dnew = dump("dump.all")

The first 2 commands create dump and pdb objects named "d" and "p" respectively. The "d" and "p" are Python
variable names; you could use any names you wish: "dump12" or "Dump_mine" or whatever. The 3rd line

14

http://www.idyll.org/~n8gray/code/index.html

invokes the "many" method within the pdb class for the pdb object "p". This method writes out a series of PDB
files using the snapshots in "d" which was passed to "p" when it was created. The final command creates a new
dump object "dnew" from another dump file. You can create and manage as many objects (of the same or
different classes) simultaneously as you wish. If the last line assigned the object to "d", the original dump object
with the same name would be deleted by Python.

Various Pizza.py tools create temporary files as they operate. These are all named tmp.*. Pizza.py does not clean
up all of these files, since they are sometimes useful to look at for debugging or other purposes.

Python syntax allows for powerful combinations of tools to be invoked in one or a few commands. For example

lg = log("log.*")
m = matlab()
plotview(lg,m)

could be abbreviated as

plotview(log("log.*"),matlab())

With the −c command line switch, this one−liner could be specified when Pizza.py is launched. This example also
illustrates that created objects (like the plotview object) do not need to be assigned to variables if they will not be
accessed in subsequent commands.

3.5 Running Pizza.py and Python scripts

A file containing Python and/or Pizza.py commands can be executed as a script and arguments can be passed to it
(if desired). The script can be run in several different ways:

(1) From the Pizza.py command line

% pizza −f script.sample file.test 10 ...

(2) From the Pizza.py interactive prompt

> @run script.sample file.test 10 ...

(3) From the Python command line

% python −i script.sample file.test 10 ...

(4) From a shell prompt with #!/usr/local/bin/python −i as 1st line of script

% script.sample arg1 arg2 ...

(5) From the Python interactive prompt

>>> argv = 0,"file.test","10",...
>>> execfile("script.sample")

(6) As a nested script from within another Python or Pizza.py script file

argv = 0,"file.test","10",...
execfile("script.sample")

15

The Pizza.py interpreter short−cut commands described in the next section cannot be used in a script file.

There are 2 additional issues to address in your script files.

(A) First, if the script uses Pizza.py commands and you want to run it from Python itself (methods 3,4,5,6), then
your script should import the necessary Pizza.py tools directly. E.g. if your script uses the log and matlab tools,
you would put these lines at the top:

from log import log
from matlab import matlab

This is OK to do even if the script will be run by Pizza.py since it doesn't matter that Pizza.py already imported
the tools. Note that if you do this, you can then give your script file and the Python tool *.py files it uses to
someone who doesn't have Pizza.py and they can run your script with their Python.

(B) Second, if your script takes arguments and you want the same script to run identically for all 6 methods, then
you need to include this line at the beginning of the script:

if not globals().has_key("argv"): argv = sys.argv

This will enable the arguments to be accessed in the script as argv1 for the 1st argument, argv2 for the 2nd, etc.

This works because in methods 3,4 Python stores the script arguments in sys.argv and the script name in
sys.argv0. The above line of Python code copies sys.argv to argv. When Pizza.py runs the script (methods 1,2) it
loads the arguments directly into the "argv" variable. Methods 5,6 load the arguments into argv explicitly before
executing the script via execfile(). In this case argv0 is a dummy argument to conform with the Python convention
for sys.argv.

Also note in methods 5,6 that all arguments such as "10" must be strings even if they are numeric values, since
this is the way they are passed to the script in methods 1,2,3,4.

As an example of the flexibility enabled by combining scripts, arguments, and command−line options in Pizza.py,
consider the 3−line example of the previous sub−section. We modify the script as follows and save it as
logview.py:

files = ' '.join(argv1:) # create one string from list of filenames
lg = log(files)
m = matlab()
plotview(lg,m)

If an alias is defined in your shell start−up file, such as

alias logview ~/pizza/src/pizza.py −f logview.py

then you can type the following one−liner at the shell prompt to invoke Pizza.py on the logview.py script with a
list of files you specfiy.

% logview log.1 log.2 ...

A set of plots and a control GUI will appear on your screen.

16

3.6 Error messages

If you mistype a Pizza.py or Python command or pass an invalid argument to a tool method, an error message will
be printed by Python. Usually these will be self−explanatory. Sometimes they will point to a line of code inside a
tool which Python was unable to execute successfully. This could be because you passed the wrong arguments to
the tool, the data the tool is operating on is invalid, or because there's a bug in the tool. In the latter case, please
figure out as much as you can about the bug and email a description and the necessary files to reproduce the bug
in the simplest possible way to sjplimp@sandia.gov.

17

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

4. Tools within Pizza.py

Th previous section describes how Pizza.py tools are used in Pizza.py.

Help on the syntax for invoking a tool and using its methods and settings can be accessed interactively within
Pizza.py itself by typing "? tool" or "?? tool". Typing "??" gives a one−line description of each tool.

These are the different categories of Pizza.py tools:

LAMMPS in/out files chain, data, dump, log, patch, bdump, ldump, tdump

ChemCell in/out files cdata, clog, dump

Visualization gl, rasmol, raster, svg, vmd

File conversion cfg, ensight, pdbfile, vtk, xyz

GUI wrappers animate, image, plotview, vcr

Plotting gnu, matlab

Miscellaneous histo, mdump, pair, vec
Within the plotting and viz categories, individual tools share many common methods, so the tools can often be
used interchangeably. For example, the same script can produce an animation using either Raster3d or SVG to
generate the movie frames, by simply changing the line that creates the visualizer object, or by passing the object
into the script as an argument.

This is the complete list of tools in Pizza.py; the link is to each tool's documentation page.

animate.py Animate a series of image files

bdump.py Read LAMMPS dump local files with bond info

cdata.py Read, write, manipulate Chemcell data files

chain.py Create bead−spring chains for LAMMPS input

cfg.py Convert LAMMPS snapshots to CFG format

clog.py Read ChemCell log files and extract species data

data.py Read, write, manipulate LAMMPS data files

dump.py
Read, write, manipulate dump files and particle
attributes

ensight.py Convert LAMMPS snapshots to Ensight format

gl.py 3d interactive visualization via OpenGL

gnu.py Create plots via GnuPlot plotting program

histo.py Particle density histogram from a dump

image.py View and manipulate images

ldump.py Read LAMMPS dump files with line info

log.py
Read LAMMPS log files and extract thermodynamic
data

matlab.py Create plots via MatLab numerical analysis program

mdump.py Read, write, manipulate mesh dump files

pair.py Compute LAMMPS pairwise energies

patch.py

18

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/cell.html
http://www.cs.sandia.gov/~sjplimp/cell.html
http://www.ensight.com
http://www.gnuplot.info
http://www.mathworks.com

Create patchy Lennard−Jones particles for
LAMMPS input

pdbfile.py
Read, write PDB files in combo with LAMMPS
snapshots

plotview.py Plot multiple vectors from a data set

rasmol.py 3d visualization via RasMol program

raster.py 3d visualization via Raster3d program

svg.py 3d visualization via SVG files

tdump.py Read LAMMPS dump files with triangle info

vcr.py
VCR−style GUI for 3d interactive OpenGL
visualization

vec.py
Create numeric vectors from columns in file or list
of vecs

vtk.py Convert LAMMPS snapshots to VTK format

vmd.py Wrapper on VMD visualization package

xyz.py Convert LAMMPS snapshots to XYZ format
This diagram represents the different ways tools can be interconnected by Pizza.py. Tools within the same red box
are tools that are (roughly) interchangeable.

19

http://www.openrasmol.org
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.w3.org/Graphics/SVG
http://www.ks.uiuc.edu/Research/vmd

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools − Next Section

5. Example scripts

The Pizza.py distribution includes 2 sets of example scripts. A listing of included scripts is given on the Pizza.py
WWW site.

(A) The examples directory has a README file and a variety of scripts. For each tool in Pizza.py there is a
test_tool.py script that invokes the tool on a simple data set (from the files sub−directory) and exercises various
tool methods. These scripts are meant to illustrate how the tool is used.

Assuming pizza.py is in your path, each of the test scripts can be run from within the examples directory by
typing one of these lines (from the shell or from within Pizza.py):

% pizza.py −f test_animate.py
> @run test_animate.py

The remaining scripts in the examples directory illustrate how to do various tasks in Pizza.py. They are not meant
to be generically useful nor are they well documented. Rather they are illustrations of how to do some specific
task quickly and straightforwardly. Most of these scripts are not meant to be run by other users, since their data
files are not included.

(B) The scripts directory contains several scripts you may find useful either to use directly or to modify to create a
new script for your purposes.

The top of each script file describes its purpose and syntax. That information can be be accessed from within
Pizza.py by typing "??" or "? name.py" or "?? name.py".

As explained in this section, any file in the scripts directory can be run from the directory where your data lives,
by typing a line appropriate to the script's syntax, e.g.

% pizza.py −f movie.py svg 60 135 dump.protein from the shell
> @run movie.py svg 60 135 dump.protein from Pizza.py

20

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza/scripts.html
http://www.cs.sandia.gov/~sjplimp/pizza/scripts.html

Previous Section − Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

6. Extending Pizza.py

Pizza.py can easily be extended in several ways:

fix a bug1.
make a tool method faster or cleaner2.
add a new method or setting to a tool3.
add a new tool4.
add a generically useful script to the scripts dir5.
add a script that does something interesting to the examples dir6.
send a picture or movie you made with Pizza.py for the WWW page.7.

You might be able to do (2) because you're better with Python than we are! Note that generally, we've opted for
simplicity versus speed in writing the tools, unless the operation is very costly. An example of something I'd like
to speed up is the reading of large dump files in dump.py.

Some of the ideas we've had for (3), but haven't gotten around to, are listed at the top of the src/*.py files as ToDo
items.

If you think your addition will be useful to other Pizza.py users, email it to sjplimp@sandia.gov and it can be
added to the distribution with an attribution to you, both in the source code and on the Pizza.py WWW site.

Here are ideas to consider when creating new Pizza.py tools or scripts:

(1) For tools, your *.py file should contain a Python class with the same name as the *.py file since it will be
imported into Pizza.py with a statement like

from dump import dump

(2) Your scripts can use methods from Pizza.py classes to make data analysis easier. E.g. scripts can be written
that use the dump tool to read dump files, then use the iterator calls and vecs() method from dump.py to loop over
snapshots and extract lists of particles for further computation. See the scripts and examples directories for
examples of this.

(3) To flag an error in your script or tool and exit back to the Pizza.py prompt, use a line like:

raise StandardError,"error message"

(4) Document your tool be defining the "oneline" and "docstr" variables at the top of the file. This is what will be
printed when you type "? dump", for example.

(5) If you intend your tool to interact with other Pizza.py tools, you should follow the Pizza.py philosophy of
having objects be passed as arguments to the tool methods. If you're creating a tool that is similar to an existing
tool, but a different flavor (e.g. wrapping another plotting package in addition to MatLab or GnuPlot), then try to
make the interface similar to the others so all the related tools can be used interchangeably.

(6) From the Pizza.py perspective, the difference between a script and a tool is as follows. A script typically does
a specific operation (with or without arguments). E.g. process a dump file and compute a quantity. A tool version
of the same operation would allow it to store internal state and persist, or to be packaged in a way that other tools
or scripts can create instances of it and call its methods. From the Python perspective the code for the 2 cases may

21

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza/thanks.html

not look very different. The tool version might just be some Python variables and methods stuck inside a Python
class, which is what a Pizza.py tool basically is.

(7) The various Pizza.py tools are mostly related to the "LAMMPS" molecular dynamics or ChemCell cell
simulator packages. But of course you can write Pizza.py tools that have nothing to do with LAMMPS or
ChemCell. If you think they will still be of general interest to Pizza.py users, you can send them to us to include
in the Pizza.py distribution. Or you can keep the top−level pizza.py file, throw away the LAMMPS and ChemCell
tool files, build your own toolkit for whatever application you wish, and use or even distribute it yourself. That's
the open−source philosophy.

22

http://www.cs.sandia.gov/~sjplimp/chemcell.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

animate tool

Purpose:

Animate a series of image files.

Description:

The animate tool displays a GUI to view and animate a series of image files.

The animate constructor creates the GUI. The animation can be controlled by the GUI widgets or by invoking the
tool methods: play(), stop(), next(), etc. The frame slider can be dragged to view a desired frame.

Image files can be in any format (PNG, GIF, BMP, etc) recognized by the Python Image Library (PIL) installed in
your Python. Various Pizza.py visualization tools (raster, rasmol, etc) create such image files. If a particular
image format fails to load, your PIL installation was linked without support for that format. Rebuild PIL, and
follow its install instructions.

Usage:

a = animate("image*.png") create GUI to animate set of image files

Actions (same as GUI widgets):

a.first() go to first frame
a.prev() go to previous frame
a.back() play backwards from current frame to start
a.stop() stop on current frame
a.play() play from current frame to end
a.next() go to next frame
a.last() go to last frame

a.frame(31) set frame slider
a.delay(0.4) set delay slider

Related tools:

gl, raster, rasmol, svg, vcr

Prerequisites:

Python Tkinter and PIL packages.

23

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

bdump tool

Purpose:

Read dump files with bond info.

Description:

The bdump tool reads one or more LAMMPS dump files, and stores their contents as a series of snapshots with 2d
arrays of atom attributes. It is assumed that each entry contains info for a bond in a LAMMPS simulation as is
typically written by the dump local command in LAMMPS. Other tools use bdump objects to extract bond info
for visualization, like the dump tool via its extra() method.

The constructor method is passed a string containing one or more dump filenames. They can be listed in any order
since snapshots are sorted by timestep after they are read and duplicate snapshots (with the same time stamp) are
deleted. If a 2nd argument is specified, the files are not immediately read, but snapshots can be read
one−at−a−time by the next() method.

The map() method assigns names to columns of attributes. The id,type,atom1,atom2 names must be assigned in
order for bond info to be extracted.

The viz() method is called by Pizza.py tools that visualize snapshots of atoms (e.g. gl, raster, svg tools).

Normally, LAMMPS creates the dump files read in by this tool. If you want to create them yourself, the format of
LAMMPS dump local files is simple. Each snapshot is formatted as follows:

ITEM: TIMESTEP
100
ITEM: NUMBER OF ENTRIES
32
ITEM: ENTRIES
1 1 5 10
2 1 11 45
3 2 6 8
...
N −3 23 456

There are N lines following "ITEM: ENTRIES" where N is the number of entries. Entries do not have to be listed
in any particular order. There can be a different number of entries in each snapshot. Each line must contain the
bond ID, type, and the 2 atom IDs of the atoms in the bond, as specified by the map() command.

Usage:

b = bdump("dump.one") read in one or more dump files
b = bdump("dump.1 dump.2.gz") can be gzipped
b = bdump("dump.*") wildcard expands to multiple files
b = bdump("dump.*",0) two args = store filenames, but don't read

 incomplete and duplicate snapshots are deleted
 no column name assignment is performed

time = b.next() read next snapshot from dump files

24

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://lammps.sandia.gov

 used with 2−argument constructor to allow reading snapshots one−at−a−time
 snapshot will be skipped only if another snapshot has same time stamp
 return time stamp of snapshot read
 return −1 if no snapshots left or last snapshot is incomplete
 no column name assignment is performed

b.map(1,"id",3,"x") assign names to atom columns (1−N)

 must assign id,type,atom1,atom2

time,box,atoms,bonds,tris,lines = b.viz(index) return list of viz objects

 viz() returns line info for specified timestep index
 can also call as viz(time,1) and will find index of preceding snapshot
 time = timestep value
 box = NULL
 atoms = NULL
 bonds = id,type,atom1,atom2 for each line as 2d array
 tris = NULL
 lines = NULL

Related tools:

dump, gl, raster, svg

Prerequisites:

Numeric or NumPy Python packages. Gunzip command (if you want to read gzipped files).

25

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

cdata tool

Purpose:

Read, create, manipulate ChemCell data files.

Description:

The cdata tool reads and writes ChemCell data files which contain particle and surface information. It enables the
creation of geometric models of cells for input to ChemCell.

The cdata constructor reads in the specified LAMMPS data file. With no argument, an empty cdata object is
created which can have objects added to it later, and then be written out.

A cdata object or file contains "objects" of different types. Each object has a unique user−assigned ID. Objects
can be of several types: "group", "triangles", "region", "facets", or "lines". A group is a list of particles, all of the
same type. Triangles define a surface and include a list of vertices, triangle definitions, and adjacent edge
connections. A region is a geometric object that defines a surface, such as a sphere. Facets are a CUBIT meshing
format that defines a set of vertices and triangles; it is converted into a triangles entry. Lines are a collection of
line segments.

The box(), sphere(), shell(), cyl(), and cap() methods create a new "region" object. The q() method sets
triangulations factors that are used when the region is converted into a triangulated surface for output or
visualization.

The line() and ibox() methods create a "lines" object.

The surf() method creates a "triangles" object from a region, using the q() parameters. The surftri() method creats
a new "triangles" object from a list of triangle indices belonging to another surface. The surfselect() method
applies an if test to vertices and triangles in another surface to choose a subset of them to form a new "triangles"
object. The bins() method sets the number of bins in x,y when surfaces are binned for the purpose of creating
particles inside/outside the surface.

The part(), part2d(), partarray(), and partring() methods create a "group" of particles inside, outside, or on regions
or triangulated surfaces. Particles are 3d by default, or 2d if created on a surface. The partsurf() method can be
used to change the name of the surface 2d particles are on, since that attribute is written to a file when the
particles are output. The creation of particles uses a random # generator whose initial seed can be set via the
seed() method.

The random() method can be used to pick a random point on the surface of a "region" or "triangles" object. The
project() method maps particles to the surface of a "region" or "triangulate" object.

The center(), trans(), rotate(), and scale() methods are used to perform a geometric transformation on a "group" of
particles or a "triangles" object. The union() method creates a new object of "union" type from a list of objects.
The join() method does the same thing except all objects in the list must be of the same type and the new object is
also of that type. A join() can only be done for "group", "triangles", or "line" objects. The delete(), rename(), and
copy() methods manipulate the IDs of previously defined objects.

Be default all objects are selected when created. The select() and unselect() methods can be used to select a subset
of existing objects. The write() and append() methods write out selected objects to a file.

26

http://www.cs.sandia.gov/~sjplimp/pizza.html

The iterator() and viz() methods are called by Pizza.py tools that visualize snapshots of atoms (e.g. gl, raster, svg
tools). Only selected objects are returned to the caller. A cdata file can be visualzed similarly to a snapshots from
a dump file. In the case of a cdata file, there is only a single snapshot with index 0.

Usage:

c = cdata() create a datafile object
c = cdata("mem.surf") read in one or more ChemCell data files
c = cdata("mem.part.gz mem.surf") can be gzipped
c = cdata("mem.*") wildcard expands to multiple files
c.read("mem.surf") read in one or more data files

 read() has same argument options as constructor
 files contain the following kinds of entries, each of which becomes an object
 particles, triangles, region, facets
 particles is a list of particles −> becomes a group
 triangles is 3 lists of vertices, triangles, connections −> becomes a surf
 region is a ChemCell command defining a region −> becomes a region
 facets is a CUBIT format of vertices and triangles −> becomes a surf
 each object is assigned an ID = name in file
 ID can be any number or string, must be unique

c.box(ID,xlo,ylo,zlo,xhi,yhi,zhi) create a box region
c.sphere(ID,x,y,z,r) create a sphere region
c.shell(ID,x,y,z,r,rinner) create a shell region
c.cyl(ID,'x',c1,c2,r,lo,hi) create a axis−aligned cylinder region
c.cap(ID,'x',c1,c2,r,lo,hi) create a axis−aligned capped−cylinder region
c.q(ID,q1,q2,...) set region triangulation quality factors

 box() can create an axis−aligned plane, line, or point if lo=hi
 cyl() can create an axis−aligned circle if lo=hi
 for cyl() and cap(): 'x' c1,c2 = y,z; 'y' c1,c2 = x,z; 'z' c,c2 = x,y
 q's are size factors for region triangulation
 for box, q1,q2,q3 = # of divisions per xyz of box
 for sphere or shell, q1 = # of divisions per face edge of embedded cube
 for cyl or cap, q1 = # of divisions per face edge of end cap, must be even
 q2 = # of divisions along length of cylinder

c.line(ID,x1,y1,z1,x2,y2,z2) create a line object with one line
c.lbox(ID,xlo,ylo,zlo,xhi,yhi,zhi) create a line object with 12 box lines

c.surf(ID,id−region) create a triangulated surf from a region
c.surftri(ID,id−surf,t1,t2,...) create a tri surf from list of id−surf tris
c.surfselect(ID,id−surf,test) create a tri surf from test on id−surf tris
c.bins(ID,nx,ny) set binning parameters for a surf

 triangulation of a shell is just done for the outer sphere
 for surftri(), one or more tri indices (1−N) must be listed
 for surfselect(), test is string like "$x <2.0 and $y > 0.0"
 bins are used when particles are created inside/outside a surf

c.part(ID,n,id_in) create N particles inside object id_in
c.part(ID,n,id_in,id_out) particles are also outside object id_out
c.part2d(ID,n,id_on) create 2d particles on object id_on
c.partarray(ID,nx,nz,nz,x,y,z,dx,dy,dz) create 3d grid of particles
c.partring(ID,n,x,y,z,r,'x') create ring of particles
c.partsurf(ID,id_on) change surf of existing 2d particle group
c.seed(43284) set random # seed (def = 12345)

 generate particle positions randomly (unless otherwise noted)
 for part(), id_in and id_out must be IDs of a surf, region, or union object

27

 inside a union object means inside any of the lower−level objects
 outside a union object means outside all of the lower−level objects
 for part2d(), id_on must be ID of a surf, region, or union object
 for part2d(), particles will be written as 2d assigned to surf id_on
 for partring(), ring axis is in 'x','y', or 'z' direction
 partsurf() changes surf id_on for an existing 2d particle group

x,n = c.random(ID) pick a random pt on surf of object ID
c.project(ID,ID2,dx,dy,dz,eps,fg) project particles in ID to surf of obj ID2

 random() returns pt = [x,y,z] and normal vec n [nx,ny,nz]
 for random(), ID can be surf or region obj
 project() remaps particle coords in group ID
 moves each particle along dir until they are within eps of surface
 if no fg arg, dir = (dx,dy,dz)
 if fg arg, dir = line from particle coord to (dx,dy,dz)
 ID2 can be surf or region obj
 particles are converted to 2d assigned to surf ID2

c.center(ID,x,y,z) set center point of object
c.trans(ID,dx,dy,dz) translate an object
c.rotate(ID,'x',1,1,0,'z',−1,1,0) rotate an object
c.scale(ID,sx,sy,sz) scale an object

 objects must be surface or particle group, regions cannot be changed
 for center(), default is middle of bounding box (set when obj is created)
 for rotate(), set any 2 axes, must be orthogonal, 3rd is inferred
 object is rotated so that it's current xyz axes point along new ones
 rotation and scaling occur relative to center point

c.union(ID,id1,id2,...) create a new union object from id1,id2,etc
c.join(ID,id1,id2,...) create a new object by joining id1,id2,etc
c.delete(id1,id2,...) delete one or more objects
c.rename(ID,IDnew) rename an object
c.copy(ID,IDnew) create a new object as copy of old object

 for union, all lower−level objects must be of surface, region, or union style
 for join, all joined objects must be of same style: group, surf, line
 new object is the same style

c.select(id1,id2,...) select one or more objects
c.select() select all objects
c.unselect(id1,id2,...) unselect one or more objects
c.unselect() unselect all objects

 selection applies to write() and viz()

c.write("file") write all selected objs to ChemCell file
c.write("file",id1,id2,...) write only listed &selected objects to file
c.append("file") append all selected objs to ChemCell file
c.append("file",id1,id2,...) append only listed &selected objects

 union objects are skipped, not written to file

index,time,flag = c.iterator(0/1) loop over single snapshot
time,box,atoms,bonds,tris,lines = c.viz(index) return list of viz objects

 iterator() and viz() are compatible with equivalent dump calls
 iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
 index = timestep index within dump object (only 0 for data file)
 time = timestep value (only 0 for data file)
 flag = −1 when iteration is done, 1 otherwise

28

 viz() returns info for selected objs for specified timestep index (must be 0)
 time = 0
 box = [xlo,ylo,zlo,xhi,yhi,zhi]
 atoms = id,type,x,y,z for each atom as 2d array
 NULL if atoms do not exist
 bonds = NULL
 tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
 regions are triangulated according to q() settings by viz()
 NULL if surfaces do not exist
 lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
 NULL if lines do not exist
 types are assigned to each object of same style in ascending order

Related tools:

clog, data, gl, raster, svg

Prerequisites: none

29

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

cfg tool

Purpose:

Convert LAMMPS snapshots to AtomEye CFG format.

Description:

The cfg tool converts atom snapshots in a LAMMPS dump or data file to the CFG format used by the AtomEye
visualization tool.

The cfg constructor takes an object that stores atom snapshots (dump, data) as its first argument. The atom
snapshots must have "id", "type", "x", "y", and "z" defined; see the map() methods of those tools.

The one(), many(), and single() methods convert specific snapshots to the CFG format and write them out.
Optionally, a file prefix for the CFG output files can also be specified. A ".cfg" suffix will be appended to all
output files.

If your atom snapshots are not sorted by atom ID (e.g. because they were written out by a parallel LAMMPS run),
then you may want to sort them before converting them to CFG files with this tool. This can be done by "d =
dump("tmp.dump"); d.sort()". This is because AtomEye does not use atom IDs directly but infers an ID by the
order of atoms as they appear in the CFG file.

Usage:

c = cfg(d) d = object containing atom coords (dump, data)

c.one() write all snapshots to tmp.cfg
c.one("new") write all snapshots to new.cfg
c.many() write snapshots to tmp0000.cfg, tmp0001.cfg, etc
c.many("new") write snapshots to new0000.cfg, new0001.cfg, etc
c.single(N) write snapshot for timestep N to tmp.cfg
c.single(N,"file") write snapshot for timestep N to file.cfg

Related tools:

data, dump, ensight, vtk, xyz

Prerequisites: none

30

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://164.107.79.177/Archive/Graphics/A

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

chain tool

Purpose:

Create bead−spring chains for LAMMPS input.

Description:

The chain tool creates random, overlapping bead−spring (FENE) chains and writes them out as a LAMMPS data
file. They need to be simulated with a soft potential in LAMMPS to un−overlap them before they form a proper
melt.

The chain constructor uses the total number of monomers and the Lennard−Jones reduced density to create a
simulation box of the appropriate size. Optionally, the box shape can also be specified.

The build() method creates N chains, each with M monomers. It can be invoked multiple times to create sets of
chains with different properties. The starting point of each chain is chosen randomly, as is the position of
subsequent monomers. The seed value sets the random number generator used for coordinate generation.

The mtype, btype, blen, and dmin settings affect how the chain and its monomers are created. Dmin is the
minimum distance allowed between a new monomer and the monomer two before it, so it determines the stiffness
of the chain. Each monomer is assigned a molecule ID as it is created, in accord with the id setting.

Once N total monomers have been created, the ensemble of chains is written to a LAMMPS data file via the
write() method.

Usage:

c = chain(N,rho) setup box with N monomers at reduced density rho
c = chain(N,rho,1,1,2) x,y,z = aspect ratio of box (def = 1,1,1)

c.seed = 48379 set random # seed (def = 12345)
c.mtype = 2 set type of monomers (def = 1)
c.btype = 1 set type of bonds (def = 1)
c.blen = 0.97 set length of bonds (def = 0.97)
c.dmin = 1.02 set min dist from i−1 to i+1 site (def = 1.02)

c.id = "chain" set molecule ID to chain # (default)
c.id = "end1" set molecule ID to count from one end of chain
c.id = "end2" set molecule ID to count from either end of chain

c.build(100,10) create 100 chains, each of length 10

 can be invoked multiple times interleaved with different settings
 must fill box with total of N monomers

c.write("data.file") write out all built chains to LAMMPS data file

Related tools:

data, patch

31

http://www.cs.sandia.gov/~sjplimp/pizza.html

Prerequisites: none

32

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

clog tool

Purpose:

Read ChemCell and SPPARKS log files and extract time−series data.

Description:

Read one or more ChemCell log files and combine their species statistical data into long, named vectors (versus
time). The vectors can be used in Python for further processing and plotting, or they can be output to a file.

The log constructor reads one or more log files. If 2 arguments are specified, a single file is specified, and it is
assumed to contain data for multiple runs, which are averaged.

The nvec, nlen, and names values give the # of vectors, their length, and names. The get() method returns one of
more vectors as a Python list. The write() method outputs the numeric vectors to a file.

Usage:

c = clog("file1") read in one or more log files
c = clog("log1 log2.gz") can be gzipped
c = clog("file*") wildcard expands to multiple files
c = clog("log.cell","Time") 2nd arg = start string for time section
c = clog("log.cell","",0) 3rd arg = average all runs

 incomplete and duplicate thermo entries are deleted
 if specify 2nd arg, it delimits a time section
 no 2nd arg or empty string, use default which is ChemCell specific
 if specify any 3rd arg, average all runs, assume all start at time 0

nvec = c.nvec # of vectors of thermo info
nlen = c.nlen length of each vectors
names = c.names list of vector names
a,b,... = c.get("A","B",...) return one or more vectors of values
c.write("file.txt") write all vectors to a file
c.write("file.txt","A","B",...) write listed vectors to a file

 get and write allow abbreviated (uniquely) vector names

Related tools:

plotview, gnu, log, matlab

Prerequisites: none

33

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

data tool

Purpose:

Read, write, manipulate LAMMPS data files.

Description:

The data tool reads and writes LAMMPS data files. It also allows their content to be accessed or modified.

The data constructor reads in the specified LAMMPS data file. With no argument, an empty data object is created
which can have fields added to it later, and then be written out.

The map() method assigns names to different atom attributes by their column number (1−N). The get() method
extracts columns of information from the specified section of the data file.

The title, headers, and sections variables can be set directly. The header values correspond to one−line definition
that appear at the top of the data file. The box size values should be set to a Python tuple, e.g.

d.headers["xlo xhi"] = (−30, 30)

The section value should be a list of text lines, each of which includes a newline at the end.

The delete() method deletes a header or entire section of the data file. The replace() method allows one column of
a section to be replaced with a vector of new values. The newxyz() methods replaces the xyz coords of the
"Atoms" section of the data file with xyz values from the Nth snapshot of a dump object containing snapshots.

The iterator() and viz() methods are called by Pizza.py tools that visualize snapshots of atoms (e.g. raster, svg
tools). A data file can be visualzed similarly to snapshots from a dump file. In the case of a data file, there is only
a single snapshot with index 0.

The write() method outputs a LAMMPS data file.

Usage:

d = data("data.poly") read a LAMMPS data file, can be gzipped
d = data() create an empty data file

d.map(1,"id",3,"x") assign names to atom columns (1−N)

coeffs = d.get("Pair Coeffs") extract info from data file section
q = d.get("Atoms",4)

 1 arg = all columns returned as 2d array of floats
 2 args = Nth column returned as vector of floats

d.reorder("Atoms",1,3,2,4,5) reorder columns (1−N) in a data file section

 1,3,2,4,5 = new order of previous columns, can delete columns this way

d.title = "My LAMMPS data file" set title of the data file
d.headers["atoms"] = 1500 set a header value

34

http://www.cs.sandia.gov/~sjplimp/pizza.html

d.sections["Bonds"] = lines set a section to list of lines (with newlines)
d.delete("bonds") delete a keyword or section of data file
d.delete("Bonds")
d.replace("Atoms",5,vec) replace Nth column of section with vector
d.newxyz(dmp,1000) replace xyz in Atoms with xyz of snapshot N

 newxyz assumes id,x,y,z are defined in both data and dump files
 also replaces ix,iy,iz if they are defined

index,time,flag = d.iterator(0/1) loop over single data file snapshot
time,box,atoms,bonds,tris,lines = d.viz(index) return list of viz objects

 iterator() and viz() are compatible with equivalent dump calls
 iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
 index = timestep index within dump object (only 0 for data file)
 time = timestep value (only 0 for data file)
 flag = −1 when iteration is done, 1 otherwise
 viz() returns info for specified timestep index (must be 0)
 time = 0
 box = [xlo,ylo,zlo,xhi,yhi,zhi]
 atoms = id,type,x,y,z for each atom as 2d array
 bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
 NULL if bonds do not exist
 tris = NULL
 lines = NULL

d.write("data.new") write a LAMMPS data file

Related tools:

gl, raster, svg

Prerequisites: none

35

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

dump tool

Purpose:

Read, write, manipulate dump files and particle attributes.

Description:

The dump tool reads one or more LAMMPS dump files, stores their contents as a series of snapshots with 2d
arrays of atom attributes, and allows the values to be accessed and manipulated. Other tools use dump objects to
convert LAMMPS files to other formats or visualize the atoms.

The constructor method is passed a string containing one or more dump filenames. They can be listed in any order
since snapshots are sorted by timestep after they are read and duplicate snapshots (with the same time stamp) are
deleted. If a 2nd argument is specified, the files are not immediately read, but snapshots can be read
one−at−a−time by the next() method.

The map() method assigns names to columns of atom attributes. The tselect() methods select one or more
snapshots by their time stamp. The delete() method deletes unselected timesteps so their memory is freed up. This
can be useful to do when reading snapshots one−at−a−time for huge data sets. The aselect() methods selects
atoms within selected snapshots. The write() and scatter() methods write selected snapshots and atoms to one or
more files.

The scale(), unscale(), wrap(), unwrap(), and owrap() methods change the coordinates of all atoms with respect to
the simulation box size. The sort() method sorts atoms within snapshots by their ID or another specified column.

The set() method enables new or existing columns to be set to new values. The minmax() method sets a column to
an integer value between the min and max values in another column; it can be used to create a color map. The
clone() method copies that column values at one timestep to other timesteps on a per−atom basis.

The time(), atom(), and vecs() methods return time or atom data as vectors of values.

The iterator() and viz() methods are called by Pizza.py tools that visualize snapshots of atoms (e.g. gl, raster, svg
tools). You can also use the iterator() method in your scripts to loop over selected snapshots. The atype setting
determines what atom column is returned as the atom "type" by the viz() method. The bonds() method can be used
to create a static list of bonds that are returned by the viz() method.

Normally, LAMMPS creates the dump files read in by this tool. If you want to create them yourself, the format of
LAMMPS dump files is simple. Each snapshot is formatted as follows:

ITEM: TIMESTEP
100
ITEM: NUMBER OF ATOMS
32
ITEM: BOX BOUNDS
0 3.35919
0 3.35919
0 7.50
ITEM: ATOMS
1 1 0 0 0
2 1 0.25 0.25 0
3 1 0.25 0 0.25

36

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://lammps.sandia.gov

...
N 3 0.7 0.5 0.6

The box bounds are listed as xlo xhi on the 1st line, ylo yhi on the next line, zlo zhi on the last. There are N lines
following "ITEM: ATOMS" where N is the number of atoms. As the dump tool commands indicate, atoms do not
have to be listed in any particular order. There can be a different number of atoms in each snapshot. The values on
each atom line are "ID type x y z" by default, but other quantities can be listed in any desired order. The map()
command can be used to specify the ordering if it is not the default.

Usage:

d = dump("dump.one") read in one or more dump files
d = dump("dump.1 dump.2.gz") can be gzipped
d = dump("dump.*") wildcard expands to multiple files
d = dump("dump.*",0) two args = store filenames, but don't read

 incomplete and duplicate snapshots are deleted
 atoms will be unscaled if stored in files as scaled

time = d.next() read next snapshot from dump files

 used with 2−argument constructor to allow reading snapshots one−at−a−time
 snapshot will be skipped only if another snapshot has same time stamp
 return time stamp of snapshot read
 return −1 if no snapshots left or last snapshot is incomplete
 no column name assignment or unscaling is performed

d.map(1,"id",3,"x") assign names to atom columns (1−N)

 not needed if dump file is self−describing

d.tselect.all() select all timesteps
d.tselect.one(N) select only timestep N
d.tselect.none() deselect all timesteps
d.tselect.skip(M) select every Mth step
d.tselect.test("$t >= 100 and $t <10000") select matching timesteps
d.delete() delete non−selected timesteps

 selecting a timestep also selects all atoms in the timestep
 skip() and test() only select from currently selected timesteps
 test() uses a Python Boolean expression with $t for timestep value
 Python comparison syntax: == != <> <= >= and or

d.aselect.all() select all atoms in all steps
d.aselect.all(N) select all atoms in one step
d.aselect.test("$id > 100 and $type == 2") select match atoms in all steps
d.aselect.test("$id > 100 and $type == 2",N) select matching atoms in one step

 all() with no args selects atoms from currently selected timesteps
 test() with one arg selects atoms from currently selected timesteps
 test() sub−selects from currently selected atoms
 test() uses a Python Boolean expression with $ for atom attributes
 Python comparison syntax: == != <> <= >= and or
 $name must end with a space

d.write("file") write selected steps/atoms to dump file
d.write("file",head,app) write selected steps/atoms to dump file
d.scatter("tmp") write selected steps/atoms to multiple files

 write() can be specified with 2 additional flags

37

 headd = 0/1 for no/yes snapshot header, app = 0/1 for write vs append
 scatter() files are given timestep suffix: e.g. tmp.0, tmp.100, etc

d.scale() scale x,y,z to 0−1 for all timesteps
d.scale(100) scale atom coords for timestep N
d.unscale() unscale x,y,z to box size to all timesteps
d.unscale(1000) unscale atom coords for timestep N
d.wrap() wrap x,y,z into periodic box via ix,iy,iz
d.unwrap() unwrap x,y,z out of box via ix,iy,iz
d.owrap("other") wrap x,y,z to same image as another atom
d.sort() sort atoms by atom ID in all selected steps
d.sort("x") sort atoms by column value in all steps
d.sort(1000) sort atoms in timestep N

 scale(), unscale(), wrap(), unwrap(), owrap() operate on all steps and atoms
 wrap(), unwrap(), owrap() require ix,iy,iz be defined
 owrap() requires a column be defined which contains an atom ID
 name of that column is the argument to owrap()
 x,y,z for each atom is wrapped to same image as the associated atom ID
 useful for wrapping all molecule's atoms the same so it is contiguous

m1,m2 = d.minmax("type") find min/max values for a column
d.set("$ke = $vx * $vx + $vy * $vy") set a column to a computed value
d.setv("type",vector) set a column to a vector of values
d.spread("ke",N,"color") 2nd col = N ints spread over 1st col
d.clone(1000,"color") clone timestep N values to other steps

 minmax() operates on selected timesteps and atoms
 set() operates on selected timesteps and atoms
 left hand side column is created if necessary
 left−hand side column is unset or unchanged for non−selected atoms
 equation is in Python syntax
 use $ for column names, $name must end with a space
 setv() operates on selected timesteps and atoms
 if column label does not exist, column is created
 values in vector are assigned sequentially to atoms, so may want to sort()
 length of vector must match # of selected atoms
 spread() operates on selected timesteps and atoms
 min and max are found for 1st specified column across all selected atoms
 atom's value is linear mapping (1−N) between min and max
 that is stored in 2nd column (created if needed)
 useful for creating a color map
 clone() operates on selected timesteps and atoms
 values at every timestep are set to value at timestep N for that atom ID
 useful for propagating a color map

t = d.time() return vector of selected timestep values
fx,fy,... = d.atom(100,"fx","fy",...) return vector(s) for atom ID N
fx,fy,... = d.vecs(1000,"fx","fy",...) return vector(s) for timestep N

 atom() returns vectors with one value for each selected timestep
 vecs() returns vectors with one value for each selected atom in the timestep

index,time,flag = d.iterator(0/1) loop over dump snapshots
time,box,atoms,bonds,tris,lines = d.viz(index) return list of viz objects
d.atype = "color" set column returned as "type" by viz
d.extra(obj) extract bond/tri/line info from obj

 iterator() loops over selected timesteps
 iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
 index = index within dump object (0 to # of snapshots)
 time = timestep value
 flag = −1 when iteration is done, 1 otherwise

38

 viz() returns info for selected atoms for specified timestep index
 can also call as viz(time,1) and will find index of preceding snapshot
 time = timestep value
 box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
 atoms = id,type,x,y,z for each atom as 2d array
 bonds = id,type,x1,y1,z1,x2,y2,z2,t1,t2 for each bond as 2d array
 if extra() used to define bonds, else NULL
 tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
 if extra() used to define tris, else NULL
 lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
 if extra() used to define lines, else NULL
 atype is column name viz() will return as atom type (def = "type")
 extra() extracts bonds/tris/lines from obj each time viz() is called
 obj can be data object for bonds, cdata object for tris and lines,
 bdump object for bonds, mdump object for tris, ldump object for lines

Related tools:

data, gl, mdump, tdump, raster, svg

Prerequisites:

Numeric or NumPy Python packages. Gunzip command (if you want to read gzipped files).

39

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

ensight tool

Purpose:

Convert LAMMPS snapshots or meshes to Ensight format.

Description:

The ensight tool converts atom snapshots in a LAMMPS dump or data file or mesh data from a mesh file to the
format used by the Ensight visualization package. See the dump or mdump tools for info about the format of these
files and what data they contain.

The ensight constructor takes an object that stores atom or mesh snapshots (dump, data) as its first argument. The
atom snapshots must have "id", "type", "x", "y", and "z" defined; see the map() methods of those tools.

The one(), many(), and single() methods convert specific snapshots to Ensight format and write them out. These
methods take a file prefix as an optional first argument; the prefix "tmp" will be used if not specified. These
methods all create a prefix.case file which is used by Ensight to define the format and list all associated files. One
or more prefix*.xyz files are also produced which contain atom coordinates sorted by atom type. If additional
pairs of arguments are specified, attributes from the shapshot data (atoms or elements) can be written into Ensight
variable files, and used by Ensight as display attributes for the atoms or mesh elements.

Usage:

e = ensight(d) d = object with atoms or elements (dump,data,mdump)
e.change = 1 set to 1 if element nodal xyz change with time (def = 0)
e.maxtype = 10 max particle type, set if query to data will be bad

e.one()
e.one("new")
e.one("cns","Centro","eng","Energy")
e.one("new","cns","Centro","eng","Energy")
 write all snapshots as an Ensight data set
 Ensight header file = tmp.case (no 1st arg) or new.case
 Ensight coord file = tmp.xyz or new.xyz
 additional pairs of args create auxiliary files:
 tmp.cns, tmp.eng or new.cns, new.eng
 cns,eng = column name in dump file and file name suffix
 Centro,Energy = Ensight name for the variable

e.increment() same args as one(), but process dump out−of−core

e.many() same args as one(), but create multiple Ensight files
 tmp0000.xyz, tmp0001.xyz, etc
 new0000.cns, new0001.cns, etc
 new0000.eng, new0001.eng, etc

e.single(N) same args as one() prepended by N, but write a single snap

Related tools:

cfg, data, dump, mdump, vtk, xyz

Prerequisites: none

40

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

gl tool

Purpose:

3d interactive visualization via OpenGL.

Description:

The gl tool does visualizes LAMMPS or ChemCell snapshots or data files and mesh files via OpenGL graphics
calls. The interface to OpenGL is provided to Python by the open−source PyOpenGL toolkit. To do interactive
visualization, consider using this tool in conjunction with the vcr tool.

The gl constructor takes a data object containing atom or mesh snapshots as an argument (dump, data, cdata,
mdump).

The show() method displays a single image of the selected atoms or triangles of snapshot N and saves it as
image.png. While an image is displayed, the view can be changed directly by using the mouse buttons in the
OpenGl window to translate (left), rotate (middle), or zoom (right) the image. However, these mouse changes are
not permanent, unless the corresponding trans(), rotate(), and zoom() methods are invoked. The all() method loops
thru all selected snapshots, displaying each one in turn. The resulting image files are saved to image0000.png,
image0001.png, etc. The prefix "image" can be changed via the file setting.

The bg(), size(), rotate(), trans(), zoom(), box(), label(), and nolabel() methods control various aspects of the
images produced. Without the trans() and zoom() settings, the GL image should roughly fill the window and be
centered.

Additional movie effects can be produced using the pan() and select() methods. The pan() method specifies an
initial and final viewpoint that is applied to the images produced by the all() method. For intermediate images, the
view parameters will be interpolated between their initial and final values. The pan() method can thus be used to
rotate a single image or fly−by the simulation as it animates. The select() method performs additional atom
selection for each image of the all() sequence. An image−dependent %g variable can be used in the select() string.
The select() method can thus be used to slice thru the data set.

The acol(), arad(), bcol(), brad(), tcol(), and tfill() methods change attributes of the atoms, bonds, and triangles
displayed. Each atom or bond returned from the data object has an integer "type" from 1 to N. The type is used to
index into a list of RGB colors or radii for atoms and bond thickness. The adef(), bdef(), and tdef() methods setup
default mappings of types to colors/radii. The other methods enable specific assignments to be made. The
interpolation option (e.g. many types assigned to a few colors), enables a smooth rainbow of colors to be assigned
to a range of types. Note that the dump tool allows any vector to be returned as an atom "type" via its atype
setting. Thus displayed colors can be keyed to atom velocity or other properties.

Colors are specified with a string, e.g. "red". There are 140 pre−defined colors from this WWW page which can
be examined by importing the "colors" variable from "vizinfo". New colors can be defined by assigning a
nickname of your choice to an RGB triplet, as described below.

The visual quality of atom spheres can be set via the q() method. The axis() method toggles whether xyz axes are
displayed in the OpenGL window. Red is the +x axis, green is +y, and blue is +z. The ortho() method toggles
between an orthographic and perspective display of the snapshot. The clip() method can be used to narrow the
amount of data that is visualized. The reload() method is needed if you change the selection attributes of the
underlying data assigned to the gl tool, such as via the dump tool's methods. These changes will not be visible in

41

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://pyopengl.sourceforge.net
http://www.oreilly.com/catalog/wdnut/excerpt/color_names.html

the OpenGL window until the data is reloaded.

Usage:

g = gl(d) create OpenGL display for data in d

 d = atom snapshot object (dump, data)

g.bg("black") set background color (def = "black")
g.size(N) set image size to NxN
g.size(N,M) set image size to NxM
g.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)
g.shift(x,y) translate by x,y pixels in view window (def = 0,0)
g.zoom(0.5) scale image by factor (def = 1)
g.box(0/1/2) 0/1/2 = none/variable/fixed box
g.box(0/1/2,"green") set box color
g.box(0/1/2,"red",4) set box edge thickness
g.file = "image" file prefix for created images (def = "image")

g.show(N) show image of snapshot at timestep N

g.all() make images of all selected snapshots
g.all(P) images of all, start file label at P
g.all(N,M,P) make M images of snapshot N, start label at P

g.pan(60,135,1.0,40,135,1.5) pan during all() operation
g.pan() no pan during all() (default)

 args = z theta, azimuthal phi, zoom factor at beginning and end
 values at each step are interpolated between beginning and end values

g.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
g.select = "" no extra aselect (default)

 %g varies from 0.0 to 1.0 from beginning to end of all()

g.acol(2,"green") set atom colors by atom type (1−N)
g.acol([2,4],["red","blue"]) 1st arg = one type or list of types
g.acol(0,"blue") 2nd arg = one color or list of colors
g.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
g.acol(range(10),"loop") assign colors in loop, randomly ordered

 if 1st arg is 0, set all types to 2nd arg
 if list of types has a 0 (e.g. range(10)), +1 is added to each value
 interpolate means colors blend smoothly from one value to the next

g.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()

g.bcol() set bond color, same args as acol()
g.brad() set bond thickness, same args as arad()

g.tcol() set triangle color, same args as acol()
g.tfill() set triangle fill, 0 fill, 1 line, 2 both

g.lcol() set line color, same args as acol()
g.lrad() set line thickness, same args as arad()

g.adef() set atom/bond/tri/line properties to default
g.bdef() default = "loop" for colors, 0.45 for radii
g.tdef() default = 0.25 for bond/line thickness

42

g.ldef() default = 0 fill

 by default 100 types are assigned
 if atom/bond/tri/line has type > # defined properties, is an error

from vizinfo import colors access color list
print colors list defined color names and RGB values
colors["nickname"] = [R,G,B] set new RGB values from 0 to 255

 140 pre−defined colors: red, green, blue, purple, yellow, black, white, etc

Settings specific to gl tool:

g.q(10) set quality of image (def = 5)
g.axis(0/1) turn xyz axes off/on
g.ortho(0/1) perspective (0) vs orthographic (1) view
g.clip('xlo',0.25) clip in xyz from lo/hi at box fraction (0−1)
g.reload() force all data to be reloaded
g.cache = 0/1 turn off/on GL cache lists (def = on)
theta,phi,x,y,scale,up = g.gview() grab all current view parameters
g.sview(theta,phi,x,y,scale,up) set all view parameters

 data reload is necessary if dump selection is used to change the data
 cache lists usually improve graphics performance
 gview returns values to use in other commands:
 theta,phi are args to rotate()
 x,y are args to shift()
 scale is arg to zoom()
 up is a 3−vector arg to sview()

Related tools:

dump, rasmol, raster, svg, vcr, vmd

Prerequisites:

Python PyOpenGL and PIL packages.

43

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

gnu tool

Purpose:

Create plots via GnuPlot plotting program.

Description:

The gnu tool is a wrapper on the GnuPlot plotting package. GnuPlot is open source software and runs on any
platform.

The gnu constructor launches GnuPlot as a process which the gnu tool sends commands to. The GnuPlot process
can be killed via the stop() method, though this is typically unnecessary.

The plot() method plots a single vector against a linear index or pairs of vectors against each other. The pairs of
vectors are written to files and read−in by GnuPlot's plot command.

The mplot() method creates a series of plots and saves them each to a numbered file. Each file is a plot of an
increasing portion of the vector(s). This can be used to make an animation of a plot.

The enter() method can be used to interact with GnuPlot directly. Each subsequent line you type is a GnuPlot
command, until you type "quit" or "exit" to return to Pizza.py. Single GnuPlot commands can be issued as string
arguments to the gnu tool.

The export() method writes numeric data as columns to text files, so that GnuPlot can read them via its "plot"
command.

Mutliple windows can be displayed, plotted to, and manipulated using the select() and hide() methods. The save()
method writes the currently selected plot to a PostScript file.

The remaining methods (aspect, title, xrange, etc) set attributes of the currently selected plot. The erase() method
resets all attributes to their default values.

Usage:

g = gnu() start up GnuPlot
g.stop() shut down GnuPlot process

g.plot(a) plot vector A against linear index
g.plot(a,b) plot B against A
g.plot(a,b,c,d,...) plot B against A, D against C, etc
g.mplot(M,N,S,"file",a,b,...) multiple plots saved to file0000.eps, etc

 each plot argument can be a tuple, list, or Numeric/NumPy vector
 mplot loops over range(M,N,S) and create one plot per iteration
 last args are same as list of vectors for plot(), e.g. 1, 2, 4 vectors
 each plot is made from a portion of the vectors, depending on loop index i
 Ith plot is of b[0:i] vs a[0:i], etc
 series of plots saved as file0000.eps, file0001.eps, etc
 if use xrange(),yrange() then plot axes will be same for all plots

g("plot 'file.dat' using 2:3 with lines") execute string in GnuPlot

44

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.gnuplot.info/

g.enter() enter GnuPlot shell
gnuplot> plot sin(x) with lines type commands directly to GnuPlot
gnuplot> exit, quit exit GnuPlot shell

g.export("data",range(100),a,...) create file with columns of numbers

 all vectors must be of equal length
 could plot from file with GnuPlot command: plot 'data' using 1:2 with lines

g.select(N) figure N becomes the current plot

 subsequent commands apply to this plot

g.hide(N) delete window for figure N
g.save("file") save current plot as file.eps

Set attributes for current plot:

g.erase() reset all attributes to default values
g.aspect(1.3) aspect ratio
g.xtitle("Time") x axis text
g.ytitle("Energy") y axis text
g.title("My Plot") title text
g.title("title","x","y") title, x axis, y axis text
g.xrange(xmin,xmax) x axis range
g.xrange() default x axis range
g.yrange(ymin,ymax) y axis range
g.yrange() default y axis range
g.xlog() toggle x axis between linear and log
g.ylog() toggle y axis between linear and log
g.label(x,y,"text") place label at x,y coords
g.curve(N,'r') set color of curve N

 colors: 'k' = black, 'r' = red, 'g' = green, 'b' = blue
 'm' = magenta, 'c' = cyan, 'y' = yellow

Related tools:

matlab, plotview

Prerequisites:

GnuPlot plotting package.

45

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

histo tool

Purpose:

Particle density histogram from a dump.

Description:

The histo tool creates spatial histograms of particle snapshots in a dump file.

The histo constructor takes an object that stores atom snapshots (dump, data) as its argument.

The compute() method creates a histogram in a specific dimension at a desired resolution, averaged across all
selected snapshots and atoms in the dump. The returned vectors can be plotted; x is the distance along the chosen
dimension, y is the histogram counts.

Usage:

h = histo(d) d = dump/cdump object

x,y = h.compute('x',N,lo,hi) compute histogram in dim with N bins

 lo/hi are optional, if not used histo will be over entire box

Related tools:

dump

Prerequisites: none

46

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

image tool

Purpose:

View and manipulate images.

Description:

The image tool can be used to display image files or convert them to other formats via the ImageMagick tools (or
alternate tools if specified in the DEFAULTS.py file).

The image constructor creates a GUI to view a set of image files as a palette of thumbnail−size images. Each
thumbnail can be clicked on to view the full−size image. Clicking on the full−size image removes it. The view()
method does the same operation for a new set of files.

The convert() method invokes the ImageMagick "convert" command to convert an image file to a different
format. If both arguments have a wildcard character, one conversion is done for each file in the 1st argument to
create a file in the 2nd argument, e.g. "convert image0012.svg new0012.png". If either argument has no wildcard,
one "convert" command is issued using both arguments. This form can be used to create a movie file, e.g.
"convert *.png ligand.mpg".

The montage() method invokes the ImageMagick "montage" command to combine 2 image files to create a 3rd. If
all 3 arguments have a wildcard character, one montage is created for each file in the 1st argument, paired with
one file in the 2nd argument, e.g. "montage image0012.svg plot0012.eps combine0012.png". For this to work, the
1st arguments must each expand to the same number of files. If any of the 3 arguments does not have a wildcard,
one "montage" command is issued using all 3 arguements.

Image files can be in any format (PNG, GIF, JPG, etc) recognized by the Python Image Library (PIL) installed in
your Python or by ImageMagick. Various Pizza.py visualization tools (raster, deja, rasmol, etc) create such image
files. If a particular image format fails to load, your PIL installation was linked without support for that format.
Rebuild PIL, and follow the install instructions included in its top directory.

Usage:

i = image("my1.gif my2.gif") display thumbnails of matching images
i = image("*.png *.gif") wildcards allowed
i = image("") blank string matches all image suffixes
i = image() no display window opened if no arg

 image suffixes for blank string = *.png, *.bmp, *.gif, *.tiff, *.tif
 click on a thumbnail to view it full−size
 click on thumbnail again to remove full−sized version

i.view("*.png *.gif") display thumbnails of matching images

 view arg is same as constructor arg

i.convert("image*.svg","new*.png") each SVG file to PNG
i.convert("image*.svg","new*.jpg","−quality 50") 3rd arg is switch
i.convert("image*.png","movie.mpg") all PNGs to MPG movie
i.convert("image*.png","movie.mpg","−resize 128x128") 3rd arg is switch
i.montage("","image*.png","plot*.png","two*.png") image + plot = two
i.montage("−geometry 512x512","i*.png","new.png") 1st arg is switch

47

http://www.cs.sandia.gov/~sjplimp/pizza.html

 convert with 2 wildcard args loops over 1st set of files to make 2nd set
 convert with not all wildcard args will issue single convert command
 montage with all wildcard args loops over 1st set of files,
 combines with one file from other sets, to make last set of files
 montage with not all wildcard args will issue single montage command

Related tools:

raster, rasmol, animate

Prerequisites:

Python Tkinter, Pmw, and PIL packages. ImageMagick convert and montage commands or equivalent.

48

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

ldump tool

Purpose:

Read dump files with line segment info.

Description:

The ldump tool reads one or more LAMMPS dump files, and stores their contents as a series of snapshots with 2d
arrays of atom attributes. It is assumed that each atom contains line segment info from a 2d LAMMPS simulation
using atom_style line. Other tools use ldump objects to extract line segment info for visualization, like the dump
tool via its extra() method.

The constructor method is passed a string containing one or more dump filenames. They can be listed in any order
since snapshots are sorted by timestep after they are read and duplicate snapshots (with the same time stamp) are
deleted. If a 2nd argument is specified, the files are not immediately read, but snapshots can be read
one−at−a−time by the next() method.

The map() method assigns names to columns of atom attributes. The id,type,end1x,end1y,end2x,end2y names
must be assigned in order for line segment info to be extracted.

The viz() method is called by Pizza.py tools that visualize snapshots of atoms (e.g. gl, raster, svg tools).

Normally, LAMMPS creates the dump files read in by this tool. If you want to create them yourself, the format of
LAMMPS dump files is simple. Each snapshot is formatted as follows:

ITEM: TIMESTEP
100
ITEM: NUMBER OF ATOMS
32
ITEM: BOX BOUNDS
0 3.35919
0 3.35919
0 7.50
ITEM: ATOMS
1 1 0 0 0
2 1 0.25 0.25 0
3 1 0.25 0 0.25
...
N 3 0.7 0.5 0.6

The box bounds are listed as xlo xhi on the 1st line, ylo yhi on the next line, zlo zhi on the last. There are N lines
following "ITEM: ATOMS" where N is the number of atoms. Atoms do not have to be listed in any particular
order. There can be a different number of atoms in each snapshot. Each line must contain the atom ID, type, and
the end points of the associated line segment, as specified by the map() command.

Usage:

l = ldump("dump.one") read in one or more dump files
l = ldump("dump.1 dump.2.gz") can be gzipped
l = ldump("dump.*") wildcard expands to multiple files
l = ldump("dump.*",0) two args = store filenames, but don't read

49

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://lammps.sandia.gov

 incomplete and duplicate snapshots are deleted
 no column name assignment is performed

time = l.next() read next snapshot from dump files

 used with 2−argument constructor to allow reading snapshots one−at−a−time
 snapshot will be skipped only if another snapshot has same time stamp
 return time stamp of snapshot read
 return −1 if no snapshots left or last snapshot is incomplete
 no column name assignment is performed

l.map(1,"id",3,"x") assign names to atom columns (1−N)

 must assign id,type,end1x,end1y,end2x,end2y

time,box,atoms,bonds,tris,lines = l.viz(index) return list of viz objects

 viz() returns line info for specified timestep index
 can also call as viz(time,1) and will find index of preceding snapshot
 time = timestep value
 box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
 atoms = NULL
 bonds = NULL
 tris = NULL
 lines = id,type,x1,y1,z1,x2,y2,z2 for each line as 2d array
 id,type are from associated atom

l.owrap(...) wrap lines to same image as their atoms

 owrap() is called by dump tool's owrap()
 useful for wrapping all molecule's atoms/lines the same so it is contiguous

Related tools:

dump, gl, raster, svg

Prerequisites:

Numeric or NumPy Python packages. Gunzip command (if you want to read gzipped files).

50

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

log tool

Purpose:

Read LAMMPS log files and extract thermodynamic data.

Description:

Read one or more LAMMPS log files and combine their thermodynamic data into long, named vectors (versus
time). The vectors can be used in Python for further processing and plotting, or they can be output to a file.

The log constructor reads one or more log files. If 2 arguments are specified, a single file is specified, and it can
be read incrementally (e.g. as it is created) by the next() method.

The nvec, nlen, and names values give the # of vectors, their length, and names. The get() method returns one of
more vectors as a Python list. The write() method outputs the numeric vectors to a file.

Usage:

l = log("file1") read in one or more log files
l = log("log1 log2.gz") can be gzipped
l = log("file*") wildcard expands to multiple files
l = log("log.lammps",0) two args = store filename, but don't read

 incomplete and duplicate thermo entries are deleted

time = l.next() read new thermo info from file

 used with 2−argument constructor to allow reading thermo incrementally
 return time stamp of last thermo read
 return −1 if no new thermo since last read

nvec = l.nvec # of vectors of thermo info
nlen = l.nlen length of each vectors
names = l.names list of vector names
t,pe,... = l.get("Time","KE",...) return one or more vectors of values
l.write("file.txt") write all vectors to a file
l.write("file.txt","Time","PE",...) write listed vectors to a file

 get and write allow abbreviated (uniquely) vector names

Related tools:

clog, plotview, gnu, matlab

Prerequisites: none

51

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

matlab tool

Purpose:

Create plots via MatLab numerical analysis program.

Description:

The matlab tool is a wrapper on the MatLab numerical analysis package, primarily designed to use its plotting
capabilities. MatLab is commercial software available on a variety of platforms.

The matlab constructor launches MatLab as a process which the matlab tool sends commands to. The MatLab
process can be killed via the stop() method, though this is typically unnecessary.

The plot() method plots a single vector against a linear index or pairs of vectors against each other. The pairs of
vectors are written to files and read−in by MatLab. The Nth curve in a plot is stored in the MatLab variable
pizzaN, so the 2 vectors can be accessed within MatLab as pizzaN(:,1) and pizzaN(:,2).

The mplot() method creates a series of plots and saves them each to a numbered file. Each file is a plot of an
increasing portion of the vector(s). This can be used to make an animation of a plot.

The enter() method can be used to interact with MatLab directly. Each subsequent line you type is a MatLab
command, until you type "quit" or "exit" to return to Pizza.py. Single MatLab commands can be issued as string
arguments to the gnu tool.

The export() method writes numeric data as columns to text files, so that MatLab can read them via its
"importdata" command.

Mutliple windows can be displayed, plotted to, and manipulated using the select() and hide() methods. The save()
method writes the currently selected plot to a PostScript file.

The remaining methods (aspect, title, xrange, etc) set attributes of the currently selected plot. The erase() method
resets all attributes to their default values.

Usage:

m = matlab() start up MatLab
m.stop() shut down MatLab process

m.plot(a) plot vector A against linear index
m.plot(a,b) plot B against A
m.plot(a,b,c,d,...) plot B against A, D against C, etc
m.mplot(M,N,S,"file",a,b,...) multiple plots saved to file0000.eps, etc

 each plot argument can be a tuple, list, or Numeric/NumPy vector
 mplot loops over range(M,N,S) and create one plot per iteration
 last args are same as list of vectors for plot(), e.g. 1, 2, 4 vectors
 each plot is made from a portion of the vectors, depending on loop index i
 Ith plot is of b[0:i] vs a[0:i], etc
 series of plots saved as file0000.eps, file0001.eps, etc
 if use xrange(),yrange() then plot axes will be same for all plots

m("c = a + b") execute string in MatLab

52

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.mathworks.com

m.enter() enter MatLab shell
matlab> c = a + b type commands directly to MatLab
matlab> exit, quit exit MatLab shell

m.export("data",range(100),a,...) create file with columns of numbers

 all vectors must be of equal length
 could plot from file with MatLab commands:
 cols = importdata('data')
 plot(cols(:,1),cols(:,2))

m.select(N) figure N becomes the current plot

 subsequent commands apply to this plot

m.hide(N) delete window for figure N
m.save("file") save current plot as file.eps

Set attributes for current plot:

m.erase() reset all attributes to default values
m.aspect(1.3) aspect ratio
m.xtitle("Time") x axis text
m.ytitle("Energy") y axis text
m.title("My Plot") title text
m.title("title","x","y") title, x axis, y axis text
m.xrange(xmin,xmax) x axis range
m.xrange() default x axis range
m.yrange(ymin,ymax) y axis range
m.yrange() default y axis range
m.xlog() toggle x axis between linear and log
m.ylog() toggle y axis between linear and log
m.label(x,y,"text") place label at x,y coords
m.curve(N,'r') set color of curve N
m.curve(N,'g','−−') set color and line style of curve N
m.curve(N,'b','−','v') set color, line style, symbol of curve N

 colors: 'k' = black, 'r' = red, 'g' = green, 'b' = blue
 'm' = magenta, 'c' = cyan, 'y' = yellow
 styles: '−' = solid, '−−' = dashed, ':' = dotted, '−.' = dash−dot
 symbols: '+' = plus, 'o' = circle, '*' = asterik, 'x' = X,
 's' = square, 'd' = diamond, '^' = up triangle,
 'v' = down triangle, '>' = right triangle,
 '

Related tools:

gnu, plotview

Prerequisites:

The MatLab numerical analysis package.

53

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

mdump tool

Purpose:

Read, write, manipulate mesh dump files.

Description:

The mdump tool reads one or more mesh dump files, stores their contents as a series of snapshots with node and
element values, and allows the values to be accessed and manipulated. Other tools use mdump objects to convert
mesh files to other formats or visualize the mesh.

The constructor method is passed a string containing one or more mesh dump filenames. They can be listed in any
order since snapshots are sorted by timestep after they are read and duplicate snapshots (with the same time
stamp) are deleted. If a 2nd argument is specified, the files are not immediately read, but snapshots can be read
one−at−a−time by the next() method.

The map() method assigns names to columns of element values. The tselect() methods select one or more
snapshots by their time stamp. The delete() method deletes unselected timesteps so their memory is freed up. This
can be useful to do when reading snapshots one−at−a−time for huge data sets. The eselect() methods selects
elements within selected snapshots.

The time() and vecs() methods return time or element values as vectors of values.

The iterator() and viz() methods are called by Pizza.py tools that visualize triangles (e.g. gl, raster, svg tools). You
can also use the iterator() method in your scripts to loop over selected snapshots. The etype setting determines
what element value is returned as the element "type" by the viz() method. The mviz() method is called by the
ensight tool to extract per−node and per−element data to include in Ensight files it outputs, so that it can
visualized in the Ensight package.

The format of mesh dump files read in by this tool is simple. There are 4 kinds of entries that can appear within
each timestep, in any order. These are a list of node coordinates, a list of element topologies (trianglular,
tetrahedral, square, and cubic elements are currently supported), a list of nodal values, and a list of element
values. Note that a mesh file does not need to include all 4 entries every timestep. For example, if the file only
defines a mesh, but no nodal or element values, then those two entries need not appear. If the mesh is static, then
the nodal coordinates and element topologies only need to be defined once (e.g. for timestep 0). If the mesh
moves, but its topology is static, then the element topology will be defined once (timestep 0), but new nodal
coordinates could be defined every timestamp.

A single mesh file can contain multiple snapshots, listed one after the other.

The format of a nodal coordinates entry is as follows:

ITEM: TIMESTEP
0
ITEM: NUMBER OF NODES
121
ITEM: BOX BOUNDS
0 10
0 10
0 0
ITEM: NODES

54

http://www.cs.sandia.gov/~sjplimp/pizza.html

1 1 0 0 0
2 1 0 1 0
3 1 0 2 0
...
N 3 7.5 3 2.5

The box bounds are listed as xlo xhi on the 1st line, ylo yhi on the next line, zlo zhi on the last. There are N lines
following "ITEM: NODES" where N is the number of nodes. The nodes do not need to be listed in any particular
order. There can be a different number of nodes in each snapshot. The values on each node line are "ID type x y
z".

The format of an element topology entry is in one of the following styles (triangles, tetrahedra, squares, cubes):

ITEM: TIMESTEP
0
ITEM: NUMBER OF TRIANGLES
200
ITEM: TRIANGLES
1 1 1 13 12
2 1 1 2 13
3 1 2 14 13
...
N 3 259 340 432

ITEM: TIMESTEP
0
ITEM: NUMBER OF TETS
200
ITEM: TETS
1 1 1 13 12 27
2 1 1 2 13 35
3 1 2 14 13 103
...
N 3 259 340 432 1005

ITEM: TIMESTEP
0
ITEM: NUMBER OF SQUARES
200
ITEM: SQUARES
1 1 1 13 12 4
2 1 1 2 13 6
3 1 2 14 13 11
...
N 3 259 340 432 500

ITEM: TIMESTEP
0
ITEM: NUMBER OF CUBES
200
ITEM: CUBES
1 1 1 13 12 5 3 6 10 20
2 1 1 2 13 10 3 4 5 6
3 1 2 14 13 15 10 18 19
...
N 3 259 340 432 200 456 918 1002 988

There are N lines following "ITEM: TRIANGLES" or "ITEM: TETS" or "ITEM: SQUARES" or "ITEM:
CUBES" where N is the number of elements. The elements do not need to be listed in any particular order. There
can be a different number of elements in each snapshot. The values on each element line are "ID type node1
node2 ... nodeN", where N depends on the type of element. For triangles, N = 3, and the order should give an

55

outward normal via the right−hand rule. For tets, N = 4, and the order should give a right−hand rule for the first 3
nodes that points towards the 4th node. For squares, N = 4, and the nodes should be listed in counter−clockwise
order around the square. For cubes, N = 8, and the first 4 nodes are the lower face (ordered same as a square), and
the last 4 nodes are directly above the lower 4 as the upper face.

The format of a nodal values entry is as follows:

ITEM: TIMESTEP
0
ITEM: NUMBER OF NODE VALUES
200
ITEM: NODE VALUES
1 1
2 1
3 9
...
N 32

There are N lines following "ITEM: NODE VALUES" where N is the number of nodes. The nodes do not need to
be listed in any particular order. There can be a different number of nodes in each snapshot, but it should be
consistent with the current nodal coordinates entry. The values on each node line are "ID value1 value2 ..." where
there are as many columns as desired. Each line should have the same number of values.

The format of an element values entry is as follows:

ITEM: TIMESTEP
0
ITEM: NUMBER OF ELEMENT VALUES
200
ITEM: ELEMENT VALUES
1 1
2 1
3 9
...
N 32

There are N lines following "ITEM: ELEMENT VALUES" where N is the number of elements. The elements do
not need to be listed in any particular order. There can be a different number of elements in each snapshot, but it
should be consistent with the current element topology entry. The values on each element line are "ID value1
value2 ..." where there are as many columns as desired. Each line should have the same number of values. The
map() command can be used to assign names to each of these columns of values.

Usage:

m = mdump("mesh.one") read in one or more mesh dump files
m = mdump("mesh.1 mesh.2.gz") can be gzipped
m = mdump("mesh.*") wildcard expands to multiple files
m = mdump("mesh.*",0) two args = store filenames, but don't read

 incomplete and duplicate snapshots are deleted

time = m.next() read next snapshot from dump files

 used with 2−argument constructor to allow reading snapshots one−at−a−time
 snapshot will be skipped only if another snapshot has same time stamp
 return time stamp of snapshot read
 return −1 if no snapshots left or last snapshot is incomplete
 no column name assignment or unscaling is performed

56

m.map(2,"temperature") assign names to element value columns (1−N)

m.tselect.all() select all timesteps
m.tselect.one(N) select only timestep N
m.tselect.none() deselect all timesteps
m.tselect.skip(M) select every Mth step
m.tselect.test("$t >= 100 and $t <10000") select matching timesteps
m.delete() delete non−selected timesteps

 selecting a timestep also selects all elements in the timestep
 skip() and test() only select from currently selected timesteps
 test() uses a Python Boolean expression with $t for timestep value
 Python comparison syntax: == != <> <= >= and or

m.eselect.all() select all elems in all steps
m.eselect.all(N) select all elems in one step
m.eselect.test("$id > 100 and $type == 2") select match elems in all steps
m.eselect.test("$id > 100 and $type == 2",N) select matching elems in one step

 all() with no args selects atoms from currently selected timesteps
 test() with one arg selects atoms from currently selected timesteps
 test() sub−selects from currently selected elements
 test() uses a Python Boolean expression with $ for atom attributes
 Python comparison syntax: == != <> <= >= and or
 $name must end with a space

t = m.time() return vector of selected timestep values
fx,fy,... = m.vecs(1000,"fx","fy",...) return vector(s) for timestep N

 vecs() returns vectors with one value for each selected elem in the timestep

index,time,flag = m.iterator(0/1) loop over mesh dump snapshots
time,box,atoms,bonds,tris,lines = m.viz(index) return list of viz objects
nodes,elements,nvalues,evalues = m.mviz(index) return list of mesh viz objects
m.etype = "color" set column returned as "type" by viz

 iterator() loops over selected timesteps
 iterator() called with arg = 0 first time, with arg = 1 on subsequent calls
 index = index within dump object (0 to # of snapshots)
 time = timestep value
 flag = −1 when iteration is done, 1 otherwise
 viz() returns info for selected elements for specified timestep index
 can also call as viz(time,1) and will find index of preceding snapshot
 time = timestep value
 box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
 atoms = NULL
 bonds = NULL
 tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3,nx,ny,nz for each tri as 2d array
 each element is decomposed into tris
 lines = NULL
 mviz() returns info for all elements for specified timestep index
 can also call as mviz(time,1) and will find index of preceding snapshot
 time = timestep value
 box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
 nodes = list of nodes = id,type,x,y,z
 elements = list of elements = id,type,node1,node2,...
 nvalues = list of node values = id,type,value1,value2,...
 evalues = list of element values = id,type,value1,value2,...
 etype is column name viz() will return as element type (def = "" = elem type)

Related tools:

57

dump, gl, raster, svg

Prerequisites:

Numeric or NumPy Python packages. Gunzip command (if you want to read gzipped files).

58

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

pair tool

Purpose:

Compute LAMMPS pairwise energies.

Description:

The pair tool computes a pairwise energy between 2 particles using a LAMMPS molecular dynamics force field.
Thus it can be used in an analysis script to compute energies between groups of atoms from a LAMMPS snapshot
file.

The pair constructor specifies the force field style. Only some of the LAMMPS pair styles are currently included
in this tool, but new styles can easily be added. Code from the LAMMPS pair*.cpp file needs to be re−coded in
Python to make this work.

The coeff() method reads the pairwise coefficients for the force field from a data file object (see the data tool).
The init() method does pre−computations for the force field parameters needed by the single() method which does
a pairwise computation between two atoms of type = itype,jtype separated by a squared distance rsq. The
arguments for init() and single() can be different for a particular force field style. When you write the init() and
single() methods for a new style, you can define what arguments are needed.

Usage:

p = pair("lj/charmm/coul/charmm") create pair object for specific pair style

 available styles: lj/cut, lj/cut/coul/cut, lj/charmm/coul/charmm

p.coeff(d) extract pairwise coeffs from data object
p.init(cut1,cut2,...) setup based on coeffs and cutoffs

 init args are specific to pair style:
 lj/cut = cutlj
 lj/cut/coul/cut = cutlj,cut_coul (cut_coul optional)
 lj/charmm/coul/charmm = cutlj_inner,cutlj,cutcoul_inner,cut_coul
 (last 2 optional)

e_vdwl,e_coul = p.single(rsq,itype,jtype,q1,q2,...) compute LJ/Coul energy

 pairwise energy between 2 atoms at distance rsq with their attributes
 args are specific to pair style:
 lj/cut = rsq,itype,jtype
 lj/cut/coul/cut = rsq,itype,jtype,q1,q2
 lj/charmm/coul/charmm = rsq,itype,jtype,q1,q2

Related tools:

data

Prerequisites: none

59

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

patch tool

Purpose:

Create patchy Lennard−Jones particles for LAMMPS input.

Description:

The patch tool creates large multi−atom particles and writes them out as a LAMMPS data file. They need to be
simulated with a soft potential in LAMMPS to un−overlap them before they form a proper ensemble.

The individual particles consist of a collection of Lennard−Jones atoms of various types. By defining force field
coefficients appropriately, specific atoms can be made attractive or repulsive, so that "patches" of atoms on the
particle surface are reactive. The Pizza.py WWW site has example images and movies of simulations using such
particles. A paper by Sharon Glotzer's group at U Michigan describing a variety of patchy particle models was the
motivation for this tool.

The patch constructor takes a volume fraction as an argument to determine how densely to fill the simulation box.
Optionally, the box shape can also be specified.

The build() method creates N particles, each of speficied style and with specified atom types. Several styles are
available and new ones can easily be added to patch.py. You will need to look in patch.py for the details of what
each style represents. For example, "hex2" uses a C60 bucky ball as a template and creates hexagonal 6−atom
patches (atoms of a different type) on either side of the ball.

The build() method can be invoked multiple times to create collections of particles. The position and orientation
of each particle is chosen randomly. The seed value sets the random number generator used for coordinate
generation.

The ensemble of chains is written to a LAMMPS data file via the write() method.

Usage:

p = patch(vfrac) setup box with a specified volume fraction
p = patch(vfrac,1,1,2) x,y,z = aspect ratio of box (def = 1,1,1)

p.seed = 48379 set random # seed (def = 12345)
p.randomized = 0 1 = choose next particle randomly, 0 = as generated
p.dim = 2 set dimension of created box (def = 3)
p.blen = 0.97 set length of tether bonds (def = 0.97)
p.dmin = 1.02 set min r from i−1 to i+1 tether site (def = 1.02)
p.lattice = [Nx,Ny,Nz] generate Nx by Ny by Nz lattice of particles

 if lattice is set, Nx*Ny*Nz must equal N for build
 lattice = [0,0,0] = generate N particles randomly, default

p.build(100,"hex2",1,2,3) create 100 "hex2" particles with types 1,2,3

 can be invoked multiple times
 keywords:
 c60hex2: diam,1,2,3 = C−60 with 2 hex patches and ctr part, types 1,2,3
 hex2: diam,1,2 = one large particle with 2 7−mer hex patches, types 1,2
 hex4: diam,1,2 = one large particle with 4 7−mer hex patches, types 1,2

60

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.engin.umich.edu/dept/che/research/glotzer

 ring: diam,N,1,2 = one large part with equatorial ring of N, types 1,2
 ball: diam,m1,m2,1,2,3 = large ball with m12−len tethers, types 1,2,3
 tri5: 1,2 = 3−layer 5−size hollow tri, types 1,2
 rod: N,m1,m2,1,2,3 = N−length rod with m12−len tethers, types 1,2,3
 tri: N,m1,m2,m3,1,2,3,4 = N−size tri with m123−len tethers, types 1−4
 hex: m1,m2,m3,m4,m5,m6,1,2,3,4,5,6,7 = 7−atom hex with m−len tethers, t 1−7
 dimer: r,1 = two particles r apart, type 1, no bond
 star2d: N,r,1 = 2d star of length N (odd), beads r apart, type 1, no bonds
 box2d: N,M,r,1 = 2d NxM box, beads r apart, type 1, no bonds
 tritet: A,m = 4−tri tet with edge length A, tri type m
 tribox: Alo,Ahi,Blo,Bhi,Clo,Chi,m = 12−tri box with side lengths A,B,C &m
 linebox: Alo,Ahi,Blo,Bhi,m = 4−line 2d rectangle with random side lengths
 from Alo to Ahi and Blo to Bhi, line type m
 linetri: Alo,Ahi,Blo,Bhi,m = 3−line 2d triangle with random base
 from Alo to Ahi and height Blo to Bhi, type m

p.write("data.patch") write out system to LAMMPS data file

Related tools:

chain, data

Prerequisites: none

(Glotzer) Zhang and Glotzer, NanoLetters, 4, 1407−1413 (2004).

61

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

pdbfile tool

Purpose:

Read, write PDB files in combo with LAMMPS snapshots.

Description:

The pdbfile tool reads in PDB (Protein Data Bank) files of protein coordinates and uses them in conjunction with
LAMMPS snapshots in various ways. The PDB format is commonly used by various vizualization and analysis
programs.

The pdbfile constructor takes a string argument listing one or more PDB filenames and a data argument with
LAMMPS atom information (data or dump object). The atom snapshots must have "id", "type", "x", "y", and "z"
defined; see the map() methods of those tools.

Both arguments to the constructor are optional, as described below. If a single PDB file is given as a constructor
argument, and it is 4 letters long, and it does not exist on your system, then it is treated as a PDB identifier and the
matching PDB file is downloaded from a PDB repository on the WWW to your machine.

The one(), many(), and single() methods write out PDB files in various manners, depending on the 1 or 2
arguments used in the constructor. If only a string was specified (no data object), the specified PDB files are
written out as−is. Thus the one() method concatenates the files together. If only a data object was specified (no
string of PDB files), then PDB files in a generic format (Lennard−Jones atoms) are created. If both arguments are
specified, then only a single PDB file can be listed. It is treated as a template file, and the atom coordinates in the
data object replace the atom coordinates in the template PDB file to create a series of new PDB files. This
replacement is only done for selected atoms (in the dump object) and for atom IDs that appear in the PDB file.

The iterator() method is called by the rasmol tool to create a series of PDB files for visualization purposes.

Usage:

p = pdbfile("3CRO") create pdb object from PDB file or WWW
p = pdbfile("pep1 pep2") read in multiple PDB files
p = pdbfile("pep*") can use wildcards
p = pdbfile(d) read in snapshot data with no PDB file
p = pdbfile("3CRO",d) read in single PDB file with snapshot data

 string arg contains one or more PDB files
 don't need .pdb suffix except wildcard must expand to file.pdb
 if only one 4−char file specified and it is not found,
 it will be downloaded from http://www.rcsb.org as 3CRO.pdb
 d arg is object with atom coordinates (dump, data)

p.one() write all output as one big PDB file to tmp.pdb
p.one("mine") write to mine.pdb
p.many() write one PDB file per snapshot: tmp0000.pdb, ...
p.many("mine") write as mine0000.pdb, mine0001.pdb, ...
p.single(N) write timestamp N as tmp.pdb
p.single(N,"new") write as new.pdb

 how new PDB files are created depends on constructor inputs:
 if no d: one new PDB file for each file in string arg (just a copy)
 if only d specified: one new PDB file per snapshot in generic format

62

http://www.cs.sandia.gov/~sjplimp/pizza.html

 if one file in str arg and d: one new PDB file per snapshot
 using input PDB file as template
 multiple input PDB files with a d is not allowed

index,time,flag = p.iterator(0)
index,time,flag = p.iterator(1)

 iterator = loop over number of PDB files
 call first time with arg = 0, thereafter with arg = 1
 N = length = # of snapshots or # of input PDB files
 index = index of snapshot or input PDB file (0 to N−1)
 time = timestep value (time stamp for snapshot, index for multiple PDB)
 flag = −1 when iteration is done, 1 otherwise
 typically call p.single(time) in iterated loop to write out one PDB file

Related tools:

data, dump, rasmol

Prerequisites: none

63

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

plotview tool

Purpose:

Plot multiple vectors from a data set.

Description:

The plotview tool displays a GUI for showing a series of plots of vectors stored in another Pizza.py tool.
Individual plots can be displayed or hidden or saved to a file.

The plotview constructor creates the GUI and takes a data object (log, vec) and a plot object (gnu, matlab) as
arguments.

The vectors in the data object are converted to individual plots. The 2nd thru Nth vectors are each plotted against
the 1st vector to create N−1 plots. One or more plots can be displayed simultaneously (right buttons in GUI), but
only one is selected at a time (left buttons in GUI). The yes(), no(), and select() methods perform the same
function as the GUI buttons.

The currently selected plot can be modified (title, range, etc) by the methods of the plot object.

The file() and save() methods (or corresponding GUI widgets) save the currently selected plot to a PostScript file.

Usage:

p = plotview(d,pl) create GUI for viewing plots

 d = Pizza.py object that contains vectors (log, vec)
 pl = Pizza.py plotting object (gnu, matlab)

p.select(2) select one plot as current (1−N)
p.yes(3) toggle one plot's visibility
p.no(3)

 only one plot is selected at a time
 multiple plots can be visible at same time
 select is same as clicking on left−side radio−button
 yes/no is same as clicking on right−side checkbox

p.x = "Time" which vector is X vector (1st vec by default)
p.file("pressure") filename prefix for saving a plot
p.save() save currently selected plot to file.eps

Related tools:

log, gnu, matlab

Prerequisites:

Python Tkinter package.

64

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

rasmol tool

Purpose:

3d visualization via RasMol program.

Description:

The rasmol tool is a wrapper on the RasMol visualization program. RasMol is open source software and runs on
many platforms. The link above is for the Open Rasmol WWW site, not the Protein Explorer WWW site. Protein
Explorer is a derivative of RasMol and runs primarily on Windows machines within a browser. This Pizza.py tool
wraps the original RasMol program, not Protein Explorer.

The rasmol constructor takes a pdbfile object as its argument which produces PDB files that RasMol reads in. The
pdbfile object can produce PDB files from a LAMMPS dump or data file, as well as in other ways.

The show() method runs RasMol on the atoms of snapshot N (converted to a PDB file) and displays the resulting
image stored as image.gif. Either a default RasMol script or one you specify is used to format the RasMol image.
The all() method loops thru all selected snapshots and runs RasMol on each one. The resulting image files are
saved to image0000.gif, image0001.gif, etc. The prefix "image" can be changed via the file setting.

A RasMol script can be created by running RasMol itself (outside of Pizza.py), typing commands or choosing
menu options to format the display as desired, then typing "write script filename". Alternatively the run() method
will do this for you. It runs RasMol on snapshot N and lets you interact with RasMol directly either via typing or
mouse operations in the RasMol window. When you type "quit" or "exit" the script file will be saved (do not exit
via the Rasmol menu).

Usage:

r = rasmol(p) create RasMol wrapper for pdb object p

r.file = "image" file prefix for created images (def = "image")

r.show(N) show snapshot at timestep N with default script
r.show(N,"my.rasmol") use file as RasMol script

r.all() make images of all selected snapshots with def script
r.all("my.rasmol") use file as RasMol script

r.run(N) run RasMol interactivly on snapshot N
r.run(N,"new.rasmol") adjust via mouse or RasMol commands
r.run(N,"new.rasmol","old.rasmol") type quit to save RasMol script file

 if 2 args, 2nd arg is new script file, else save to "tmp.rasmol"
 if 3 args, 3rd arg is initial script file, else use default script

Related tools:

dump, gl, pdbfile, raster, svg

Prerequisites:

65

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.openrasmol.org

The RasMol program.

66

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

raster tool

Purpose:

3d visualization via Raster3d program.

Description:

The raster tool is a wrapper on the Raster3d visualization program. Raster3d is open source software and runs on
many platforms.

The raster constructor takes a data object containing atom or mesh snapshots as an argument (dump, data, cdata,
mdump).

The show() method runs Raster3d on the selected atoms or triangles of snapshot N and displays the resulting
image stored as image.png. The all() method loops thru all selected snapshots and runs Raster3d on each one. The
resulting image files are saved to image0000.png, image0001.png, etc. The prefix "image" can be changed via the
file setting.

The bg(), size(), rotate(), trans(), zoom(), box(), label(), and nolabel() methods control various aspects of the
images produced. Without the trans() and zoom() settings, the Raster3d image should roughly fill the window and
be centered.

Additional movie effects can be produced using the pan() and select() methods. The pan() method specifies an
initial and final viewpoint that is applied to the images produced by the all() method. For intermediate images, the
view parameters will be interpolated between their initial and final values. The pan() method can thus be used to
rotate a single image or fly−by the simulation as it animates. The select() method performs additional atom
selection for each image of the all() sequence. An image−dependent %g variable can be used in the select() string.
The select() method can thus be used to slice thru the data set.

The acol(), arad(), bcol(), brad(), and tcol() methods change attributes of the atoms, bonds, and triangles
displayed. Each atom or bond returned from the data object has an integer "type" from 1 to N. The type is used to
index into a list of RGB colors or radii for atoms and bond thickness. The adef(), bdef(), and tdef() methods setup
default mappings of types to colors/radii. The other methods enable specific assignments to be made. The
interpolation option (e.g. many types assigned to a few colors), enables a smooth rainbow of colors to be assigned
to a range of types. Note that the dump tool allows any vector to be returned as an atom "type" via its atype
setting. Thus displayed colors can be keyed to atom velocity or other properties.

Colors are specified with a string, e.g. "red". There are 140 pre−defined colors from this WWW page which can
be examined by importing the "colors" variable from "vizinfo". New colors can be defined by assigning a
nickname of your choice to an RGB triplet, as described below.

Usage:

r = raster(d) create Raster3d wrapper for data in d

 d = atom snapshot object (dump, data)

r.bg("black") set background color (def = "black")
r.size(N) set image size to NxN
r.size(N,M) set image size to NxM

67

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.oreilly.com/catalog/wdnut/excerpt/color_names.html

r.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)
r.shift(x,y) translate by x,y pixels in view window (def = 0,0)
r.zoom(0.5) scale image by factor (def = 1)
r.box(0/1/2) 0/1/2 = none/variable/fixed box
r.box(0/1/2,"green") set box color
r.box(0/1/2,"red",4) set box edge thickness
r.file = "image" file prefix for created images (def = "image")

r.show(N) show image of snapshot at timestep N

r.all() make images of all selected snapshots
r.all(P) images of all, start file label at P
r.all(N,M,P) make M images of snapshot N, start label at P

r.pan(60,135,1.0,40,135,1.5) pan during all() operation
r.pan() no pan during all() (default)

 args = z theta, azimuthal phi, zoom factor at beginning and end
 values at each step are interpolated between beginning and end values

r.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
r.select = "" no extra aselect (default)

 %g varies from 0.0 to 1.0 from beginning to end of all()

r.label(x,y,"h",size,"red","This is a label") add label to each image
r.nolabel() delete all labels

 x,y coords = −0.5 to 0.5, "h" or "t" for Helvetica or Times font
 size = fontsize (e.g. 10), "red" = color of text

r.acol(2,"green") set atom colors by atom type (1−N)
r.acol([2,4],["red","blue"]) 1st arg = one type or list of types
r.acol(0,"blue") 2nd arg = one color or list of colors
r.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
r.acol(range(10),"loop") assign colors in loop, randomly ordered

 if 1st arg is 0, set all types to 2nd arg
 if list of types has a 0 (e.g. range(10)), +1 is added to each value
 interpolate means colors blend smoothly from one value to the next

r.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()

r.bcol() set bond color, same args as acol()
r.brad() set bond thickness, same args as arad()

r.tcol() set triangle color, same args as acol()
r.tfill() set triangle fill, 0 fill, 1 line, 2 both

r.lcol() set line color, same args as acol()
r.lrad() set line thickness, same args as arad()

r.adef() set atom/bond/tri/line properties to default
r.bdef() default = "loop" for colors, 0.45 for radii
r.tdef() default = 0.25 for bond/line thickness
r.ldef() default = 0 fill

 by default 100 types are assigned
 if atom/bond/tri/line has type > # defined properties, is an error

from vizinfo import colors access color list

68

print colors list defined color names and RGB values
colors["nickname"] = [R,G,B] set new RGB values from 0 to 255

 140 pre−defined colors: red, green, blue, purple, yellow, black, white, etc

Related tools:

dump, gl, rasmol, svg

Prerequisites:

The Raster3d render and label3d programs.

69

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

svg tool

Purpose:

3d visualization via SVG files.

Description:

The svg tool creates Scalable Vector Graphics (SVG) files from atom or mesh snapshots. The SVG format can be
displayed or animated by various tools and is a popular format for viewing solid state lattices.

The svg constructor takes a data object containing atom or mesh snapshots as an argument (dump, data, cdata,
mdump).

The show() method creates an image.svg file for snapshot N. The all() method loops thru all selected snapshots
and creates the image files image0000.svg, image0001.svg, etc. The prefix "image" can be changed via the file
setting.

The bg(), size(), rotate(), trans(), zoom(), box(), label(), and nolabel() methods control various aspects of the
images produced. Without the trans() and zoom() settings, the Raster3d image should roughly fill the window and
be centered.

Additional movie effects can be produced using the pan() and select() methods. The pan() method specifies an
initial and final viewpoint that is applied to the images produced by the all() method. For intermediate images, the
view parameters will be interpolated between their initial and final values. The pan() method can thus be used to
rotate a single image or fly−by the simulation as it animates. The select() method performs additional atom
selection for each image of the all() sequence. An image−dependent %g variable can be used in the select() string.
The select() method can thus be used to slice thru the data set.

The acol(), arad(), bcol(), brad(), and tcol() methods change attributes of the atoms, bonds, and triangles
displayed. Each atom or bond returned from the data object has an integer "type" from 1 to N. The type is used to
index into a list of RGB colors or radii for atoms and bond thickness. The adef(), bdef(), and tdef() methods setup
default mappings of types to colors/radii. The other methods enable specific assignments to be made. The
interpolation option (e.g. many types assigned to a few colors), enables a smooth rainbow of colors to be assigned
to a range of types. Note that the dump tool allows any vector to be returned as an atom "type" via its atype
setting. Thus displayed colors can be keyed to atom velocity or other properties.

Colors are specified with a string, e.g. "red". There are 140 pre−defined colors from this WWW page which can
be examined by importing the "colors" variable from "vizinfo". New colors can be defined by assigning a
nickname of your choice to an RGB triplet, as described below.

Usage:

s = svg(d) create SVG object for data in d

 d = atom snapshot object (dump, data)

s.bg("black") set background color (def = "black")
s.size(N) set image size to NxN
s.size(N,M) set image size to NxM
s.rotate(60,135) view from z theta and azimuthal phi (def = 60,30)

70

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.w3.org/Graphics/SVG
http://www.oreilly.com/catalog/wdnut/excerpt/color_names.html

s.shift(x,y) translate by x,y pixels in view window (def = 0,0)
s.zoom(0.5) scale image by factor (def = 1)
s.box(0/1/2) 0/1/2 = none/variable/fixed box
s.box(0/1/2,"green") set box color
s.box(0/1/2,"red",4) set box edge thickness
s.file = "image" file prefix for created images (def = "image")

s.show(N) show image of snapshot at timestep N

s.all() make images of all selected snapshots
s.all(P) images of all, start file label at P
s.all(N,M,P) make M images of snapshot N, start label at P

s.pan(60,135,1.0,40,135,1.5) pan during all() operation
s.pan() no pan during all() (default)

 args = z theta, azimuthal phi, zoom factor at beginning and end
 values at each step are interpolated between beginning and end values

s.select = "$x > %g*3.0" string to pass to d.aselect.test() during all()
s.select = "" no extra aselect (default)

 %g varies from 0.0 to 1.0 from beginning to end of all()

s.label(x,y,"h",size,"red","This is a label") add label to each image
s.nolabel() delete all labels

 x,y coords = −0.5 to 0.5, "h" or "t" for Helvetica or Times font
 size = fontsize (e.g. 10), "red" = color of text

s.acol(2,"green") set atom colors by atom type (1−N)
s.acol([2,4],["red","blue"]) 1st arg = one type or list of types
s.acol(0,"blue") 2nd arg = one color or list of colors
s.acol(range(20),["red","blue"]) if list lengths unequal, interpolate
s.acol(range(10),"loop") assign colors in loop, randomly ordered

 if 1st arg is 0, set all types to 2nd arg
 if list of types has a 0 (e.g. range(10)), +1 is added to each value
 interpolate means colors blend smoothly from one value to the next

s.arad([1,2],[0.5,0.3]) set atom radii, same rules as acol()

s.bcol() set bond color, same args as acol()
s.brad() set bond thickness, same args as arad()

s.tcol() set triangle color, same args as acol()
s.tfill() set triangle fill, 0 fill, 1 line, 2 both

s.lcol() set line color, same args as acol()
s.lrad() set line thickness, same args as arad()

s.adef() set atom/bond/tri/line properties to default
s.bdef() default = "loop" for colors, 0.45 for radii
s.tdef() default = 0.25 for bond/line thickness
s.ldef() default = 0 fill

 by default 100 types are assigned
 if atom/bond/tri/line has type > # defined properties, is an error

from vizinfo import colors access color list
print colors list defined color names and RGB values

71

colors["nickname"] = [R,G,B] set new RGB values from 0 to 255

 140 pre−defined colors: red, green, blue, purple, yellow, black, white, etc

Settings specific to svg tool:

s.thick = 2.0 pixel thickness of black atom border

Related tools:

dump, gl, raster, rasmol

Prerequisites:

Display program for viewing *.svg image files.

72

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

tdump tool

Purpose:

Read dump files with triangle info.

Description:

The tdump tool reads one or more LAMMPS dump files, and stores their contents as a series of snapshots with 2d
arrays of atom attributes. It is assumed that each atom contains triangle segment info from a LAMMPS simulation
using atom_style tri. Other tools use tdump objects to extract triangle info for visualization, like the dump tool via
its extra() method.

The constructor method is passed a string containing one or more dump filenames. They can be listed in any order
since snapshots are sorted by timestep after they are read and duplicate snapshots (with the same time stamp) are
deleted. If a 2nd argument is specified, the files are not immediately read, but snapshots can be read
one−at−a−time by the next() method.

The map() method assigns names to columns of atom attributes. The id,type, corner1x,corner1y,corner1z,
corner2x,corner2y,corner2z, corner3x,corner3y,corner3z names must be assigned in order for line segment info to
be extracted.

The viz() method is called by Pizza.py tools that visualize snapshots of atoms (e.g. gl, raster, svg tools).

Normally, LAMMPS creates the dump files read in by this tool. If you want to create them yourself, the format of
LAMMPS dump files is simple. Each snapshot is formatted as follows:

ITEM: TIMESTEP
100
ITEM: NUMBER OF ATOMS
32
ITEM: BOX BOUNDS
0 3.35919
0 3.35919
0 7.50
ITEM: ATOMS
1 1 0 0 0
2 1 0.25 0.25 0
3 1 0.25 0 0.25
...
N 3 0.7 0.5 0.6

The box bounds are listed as xlo xhi on the 1st line, ylo yhi on the next line, zlo zhi on the last. There are N lines
following "ITEM: ATOMS" where N is the number of atoms. Atoms do not have to be listed in any particular
order. There can be a different number of atoms in each snapshot. Each line must contain the atom ID, type, and
the end points of the associated line segment, as specified by the map() command.

Usage:

t = tdump("dump.one") read in one or more dump files
t = tdump("dump.1 dump.2.gz") can be gzipped
t = tdump("dump.*") wildcard expands to multiple files
t = tdump("dump.*",0) two args = store filenames, but don't read

73

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://lammps.sandia.gov

 incomplete and duplicate snapshots are deleted
 no column name assignment is performed

time = t.next() read next snapshot from dump files

 used with 2−argument constructor to allow reading snapshots one−at−a−time
 snapshot will be skipped only if another snapshot has same time stamp
 return time stamp of snapshot read
 return −1 if no snapshots left or last snapshot is incomplete
 no column name assignment is performed

t.map(1,"id",3,"x") assign names to atom columns (1−N)

 must assign id,type,corner1x,corner1y,corner1z,corner2x,corner2y,corner2z,corner3x,corner3y,corner3z

time,box,atoms,bonds,tris,lines = t.viz(index) return list of viz objects

 viz() returns line info for specified timestep index
 can also call as viz(time,1) and will find index of preceding snapshot
 time = timestep value
 box = \[xlo,ylo,zlo,xhi,yhi,zhi\]
 atoms = NULL
 bonds = NULL
 tris = id,type,x1,y1,z1,x2,y2,z2,x3,y3,z3 for each tri as 2d array
 id,type are from associated atom
 lines = NULL

t.owrap(...) wrap tris to same image as their atoms

 owrap() is called by dump tool's owrap()
 useful for wrapping all molecule's atoms/tris the same so it is contiguous

Related tools:

dump, gl, raster, svg

Prerequisites:

Numeric or NumPy Python packages. Gunzip command (if you want to read gzipped files).

74

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

vcr tool

Purpose:

VCR−style GUI for 3d interactive OpenGL visualization.

Description:

The vcr tool displays a GUI to do 3d interactive visualization of LAMMPS snapshots or data files. It is a wrapper
on the gl tool which draws the individual images in OpenGL windows

The vcr constructor creates the GUI. Note that multiple OpenGL windows can be run by the same GUI so that
multiple views of the same data set can be manipulated simultaneously (or views of different data sets so long as
they have the same # of snapshots).

The view can be controlled by the GUI widgets or by invoking the tool methods: play(), stop(), axis(), etc. The
frame slider can be dragged to view a desired frame. The mouse can also be used in the OpenGL window to
translage, rotate, or zoom the scene. The clipping sliders or methods can be used to narrow the view of displayed
data, though their interactivity can be slow for scenes with lots of data.

The reload() method is needed if you change the selection attributes of the underlying data assigned to the gl tool,
such as via the dump tool's methods. These changes will not be visible in the OpenGL windows until the data is
reloaded.

The save() method will save the current OpenGL window contents to a PNG file. If multiple OpenGL windows
are being used, multiple files will be created. The save−all checkbox or method will store one file per snapshot if
the Play or Back buttons are used to start an animation.

Usage:

v = vcr(gl1,gl2,...) start vcr GUI with one or more gl windows
v.add(gl) add a gl window to vcr GUI

Actions (same as GUI widgets):

v.first() go to first frame
v.prev() go to previous frame
v.back() play backwards from current frame to start
v.stop() stop on current frame
v.play() play from current frame to end
v.next() go to next frame
v.last() go to last frame

v.frame(31) set frame slider
v.delay(0.4) set delay slider
v.q(5) set quality slider

v.xaxis() view scene from x axis
v.yaxis() view scene from y axis
v.zaxis() view scene from z axis
v.box() toggle bounding box
v.axis() toggle display of xyz axes
v.norm() recenter and resize the view
v.ortho() toggle ortho/perspective button

75

http://www.cs.sandia.gov/~sjplimp/pizza.html

v.reload() reload all frames from gl viewer data files

v.clipxlo(0.2) clip scene at x lo fraction of box
v.clipxhi(1.0) clip at x hi
v.clipylo(0.2) clip in y
v.clipyhi(1.0)
v.clipzlo(0.2) clip in z
v.clipzhi(1.0)

v.save() save current scene to file.png
v.file("image") set filename
v.saveall() toggle save−all checkbox

Related tools:

animate, gl

Prerequisites:

Python Tkinter package.

76

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

vec tool

Purpose:

Create numeric vectors from columns in file or list of vecs.

Description:

The vec tool creates numeric vectors that can be extracted, written to files, or imported into other tools like
plotview for plotting.

The vec constructor takes either a file or list argument. For a file argument, columns of numeric data are read
from the file. Blank lines or lines that do not start with a numeric character (0123456789.−) are skipped. Each
column must have the same number of values. For a list argument, each element of the list is assumed to be a
vector of values (i.e. the list is a list of lists), as shown in the example below.

The columns of data may be accessed by number (1−N) or by name ("col1" thru "colN").

The get() and write() methods extract the numeric vectors of data.

Usage:

v = vec("file1") read in numeric vectors from a file
v = vec(array) array = list of numeric vectors

 skip blank lines and lines that start with non−numeric characters
 example array with 2 vecs = [[1,2,3,4,5], [10,20,30,40,50]]
 assigns names = "col1", "col2", etc

nvec = v.nvec # of vectors
nlen = v.nlen lengths of vectors
names = v.names list of vector names
x,y,... = l.get(1,"col2",...) return one or more vectors of values
l.write("file.txt") write all vectors to a file
l.write("file.txt","col1",7,...) write listed vectors to a file

 get and write allow abbreviated (uniquely) vector names or digits (1−Nvec)

Related tools:

data, dump

Prerequisites: none

77

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

vmd tool

Purpose:

Control VMD from python.

Description:

The vmd tool is a simple wrapper on the VMD visualization package, a popular tool for visualizing snapshots
from molecular dynamics simulations.

The vmd constructor invokes VMD in its own window. Data can be passed to it for visualization via the new(),
data(), replace(), and append() methods. The other methods permit more specialized interactions with VMD
through its command syntax.

Usage:

v = vmd() start up VMD
v.stop() shut down VMD instance
v.clear() delete all visualizations

v.rep(style) set default representation style. One of
 (Lines|VDW|Licorice|DynamicBonds|Points|CPK)
v.new(file[,type]) load new file (default file type 'lammpstrj')
v.data(file[,atomstyle]) load new data file (default atom style 'full')
v.replace(file[,type]) replace current frames with new file
v.append(file[,type]) append file to current frame(s)
v.set(snap,x,y,z,(True|False)) set coordinates from a pizza.py snapshot to new or current frame

v.frame(frame) set current frame
v.flush() flush pending input to VMD and update GUI
v.read(file) read Tcl script file (e.g. saved state)

v.enter() enter interactive shell
v.debug([True|False]) display generated VMD script commands?

Related tools:

gl

Prerequisites:

Python pexpect package.

78

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.ks.uiuc.edu/Research/vmd

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

vtk tool

Purpose:

Convert LAMMPS snapshots to VTK format.

Description:

The vtk tool converts atom snapshots in a LAMMPS dump or data file to the VTK format used by various
visualization packages.

The vtk constructor takes an object that stores atom snapshots (dump, data) as its first argument. The atom
snapshots must have "id", "type", "x", "y", and "z" defined; see the map() methods of those tools.

The one(), many(), and single() methods convert specific snapshots to the VTK format and write them out.
Optionally, a file prefix for the XYZ output files can also be specified. A ".xyz" suffix will be appended to all
output files.

Usage:

v = vtk(d) d = object containing atom coords (dump, data)

v.one() write all snapshots to tmp.vtk
v.one("new") write all snapshots to new.vtk
v.many() write snapshots to tmp0000.vtk, tmp0001.vtk, etc
v.many("new") write snapshots to new0000.vtk, new0001.vtk, etc
v.single(N) write snapshot for timestep N to tmp.vtk
v.single(N,"file") write snapshot for timestep N to file.vtk

 surfaces in snapshot will be written to SURF1.vtk, SURF2.vtk, etc
 where each surface (triangle type) is in a different file

Related tools:

cfg, data, dump, ensight, xyz

Prerequisites: none

79

http://www.cs.sandia.gov/~sjplimp/pizza.html

Pizza.py WWW Site − Pizza.py Documentation − Pizza.py Tools

xyz tool

Purpose:

Convert LAMMPS snapshots to XYZ format.

Description:

The xyz tool converts atom snapshots in a LAMMPS dump or data file to the XYZ format used by various
visualization packages.

The xyz constructor takes an object that stores atom snapshots (dump, data) as its first argument. The atom
snapshots must have "id", "type", "x", "y", and "z" defined; see the map() methods of those tools.

The one(), many(), and single() methods convert specific snapshots to the XYZ format and write them out.
Optionally, a file prefix for the XYZ output files can also be specified. A ".xyz" suffix will be appended to all
output files.

Usage:

x = xyz(d) d = object containing atom coords (dump, data)

x.one() write all snapshots to tmp.xyz
x.one("new") write all snapshots to new.xyz
x.many() write snapshots to tmp0000.xyz, tmp0001.xyz, etc
x.many("new") write snapshots to new0000.xyz, new0001.xyz, etc
x.single(N) write snapshot for timestep N to tmp.xyz
x.single(N,"file") write snapshot for timestep N to file.xyz

Related tools:

cfg, data, dump, ensight, vtk

Prerequisites: none

80...1

http://www.cs.sandia.gov/~sjplimp/pizza.html

	Table of Contents
	
	Pizza.py Documentation
	Version info:

	1. Introduction
	1.1 What is Pizza.py
	1.2 Open source distribution
	1.3 Acknowledgements

	2. Installing Pizza.py
	Installing Python
	Running Pizza.py
	Setting up the DEFAULTS.py file
	Installing additional Python packages
	Numeric or Numpy
	pexpect
	PIL
	Pmw
	PyOpenGL
	readline
	Tkinter
	Installing other software
	ImageMagick display, convert, montage commands
	GnuPlot
	Gunzip
	Label3d
	MatLab
	RasMol
	Render
	VMD

	3. Basics of using Pizza.py
	3.1 Python syntax
	3.2 Pizza.py command line arguments
	3.3 Pizza.py extensions to the Python interpreter
	3.4 Using Pizza.py tools
	3.5 Running Pizza.py and Python scripts
	3.6 Error messages

	4. Tools within Pizza.py
	5. Example scripts
	6. Extending Pizza.py
	animate tool
	bdump tool
	cdata tool
	cfg tool
	chain tool
	clog tool
	data tool
	dump tool
	ensight tool
	gl tool
	gnu tool
	histo tool
	image tool
	ldump tool
	log tool
	matlab tool
	mdump tool
	pair tool
	patch tool
	pdbfile tool
	plotview tool
	rasmol tool
	raster tool
	svg tool
	tdump tool
	vcr tool
	vec tool
	vmd tool
	vtk tool
	xyz tool

