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Abstract

Schema linking is a crucial step in Text-to-SQL pipelines. Its goal is to retrieve
the relevant tables and columns of a target database for a user’s query while
disregarding irrelevant ones. However, imperfect schema linking can often exclude
required columns needed for accurate query generation. In this work, we revisit
schema linking when using the latest generation of large language models (LLMs).
We find empirically that newer models are adept at utilizing relevant schema
elements during generation even in the presence of large numbers of irrelevant
ones. As such, our Text-to-SQL pipeline entirely forgoes schema linking in cases
where the schema fits within the model’s context window in order to minimize
issues due to filtering required schema elements. Furthermore, instead of filtering
contextual information, we highlight techniques such as augmentation, selection,
and correction, and adopt them to improve the accuracy of our Text-to-SQL pipeline.
Our approach ranks first on the BIRD benchmark achieving an accuracy of 71.83%.

1 Introduction

We address the task of Text-to-SQL: generating a database-executable SQL query given a natural
language inquiry (Androutsopoulos et al.l [1995; |Quamar et al.l 2022).Text-to-SQL is crucial in
democratizing data access as it allows querying databases using natural language The advent of large
language models (LLMs) has significantly advanced Text-to-SQL by simplifying the translation of
natural language into SQL.

LLM-based Text-to-SQL approaches typically follow a multi-stage generation pipeline, as shown in
Fig. E] (Hong et al.;2024; L1 et al., [2024a; Liu et al., 2024;|Zhang et al.,|2024)). The pipeline begins
with a retrieval stage to collect contextual knowledge such as the definition of terms and database
schema elements. This is followed by a generation stage, where an LLM produces a candidate SQL
query. Finally, the correction stage regenerates the SQL as needed based on encountered errors.

Selecting relevant elements of the database schema (tables and columns) — known as schema linking —
provides the necessary context for the LLM to produce correct SQL in the downstream generation
stage. Effective schema linking implies retrieving all the relevant database components associated
with the natural language query. Missing even a single required column results in incorrect executable
SQL. Thus, it is vital to ensure that all essential columns are retrieved. However, this does not
mean that it should be overly inclusive. Research has shown that false positives, i.e., the number
of irrelevant columns passed to the LLM, can often degrade text-to-SQL accuracy. For example,
Floratou et al.| (2024) showed that even when the entire database schema fits into the context of
an LLM, it is still advantageous to perform schema linking. At the same time, attempts to prune
irrelevant columns may also remove some required ones. Thus, schema linking traditionally contains
an inherent trade-off between minimizing false positives while also preserving relevant context.
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Figure 1: A typical Text-to-SQL pipeline comparised of retrieval, generation and correction stages.

As LLM reasoning capabilities improve, we challenge the conventional wisdom that schema linking is
necessary for accurate Text-to-SQL when the schema fits within the model’s context window. We find
empirically that as model reasoning improves, the benefits of reducing false positives diminishes, i.e.,
newer models are more capable of sifting through the schema to identify relevant columns compared
to older models (Laban et al.,[2024; |Li et al.,|2024b)). This effect might be similar to how the latest
LLMs when probed can reliably recall ‘a needle in multiple millions of tokens of haystack*’ (Gregory
Kamradt, 2023} |Reid et al., [2024)). For these models, schema linking is unnecessary and can even
be detrimental, as it may filter out essential columns. Instead, we present alternatives to schema
linking that improve accuracy without schema information loss. Our approach based on these insights
currently ranks first in accuracy at 71.83% on the BIRD benchmark (Li et al., [2023)).

2 Preliminaries

We first outline the key elements of the Text-to-SQL pipeline, with a focus on schema linking and its
implications.

2.1 Text-to-SQL Pipeline

In current state-of-the-art approaches, Text-to-SQL uses multi-sage pipelines comprised of retrieval,
generation, and correction stages.

The retrieval stage gathers relevant contextual information, including schema elements, domain
knowledge, and example queries (Dong et al.,[2023; |Gao et al.| 2023} |Lee et al.| 2024} [Pourreza &
Rafiei} 2023 Wang et al., [2024)).

The generation stage often involves more than just producing a candidate SQL query associated given
an input context. Rather, approaches frequently augment the generation process through techniques
like decomposed generation (Maamari & Mhedhbi, [2024; [Pourreza & Rafiei, 2023} ' Wang et al.,[2024)
and chain-of-thought prompting (Wei et al., 2023). In addition, most approaches employ methods like
self-consistency and multi-choice selection to produce multiple results, selecting the best outcome
(Dong et al.| 2023} |Gao et al., [2023} [Lee et al.,[2024).

The retrieval and generation stages often contain various techniques chained together. These tech-
niques can be broadly categorized as filtering or augmenting, i.e., techniques can either strip away
unnecessary contextual information or attempt to provide additional useful context.

Finally, the correction stage will often employ some combination of execution-based feedback (Wang
et al., |2018b; [Lin et al., |2020; He et al.L | 2019; [Lyu et al., 2020) or model-based feedback (Talaei et al.,
2024; |Askari et al.| [2024; Wang et al.,|2018al) to correct the generated query.

2.2 Schema Linking

Within the retrieval stage, schema linking leverages sophisticated prompting techniques to produce
variable-length representations, hierarchically retrieve components, and iteratively process the schema
(Talaei et al.,|2024; Dong et al., 2023 |Pourreza & Rafieil 2023} [Lee et al., 2024; [Wang et al., 2024;
Gao et al., 2023).

These techniques can vary in i) how they represent the schema and ii) how they perform linking
on that representation. For instance, some may represent the schema in natural language, while
others utilize code-like structures (Gao et al., 2023). The approach to linking can also differ across
techniques, with some directly filtering the schema (Dong et al.| [2023; Lee et al., 2024} [Talaei et al.|
2024), and others using intermediate representations to identify relevant tables and columns (Qu et al.,
2024). The choice of schema representation and linking strategy can have a significant influence on
accuracy (Gao et al.,|2023). This variability underscores the importance of selecting an appropriate



method tailored to the specific requirements of the task, as the degree of filtering can directly impact
the loss of schema information incurred during the schema linking process.

Most prior investigations of schema linking regardless of approach have arrived at the same conclusion
— schema linking yields meaningful gains in accuracy (Guo et al.,|2019; |Li et al.| 2024a; Talaei et al.|
2024). However, these explorations used LLMs that are more sensitive to the presence of irrelevant
columns (false positives) as contextual information, where reducing the false positives yielded
meaningful gains in performance (Floratou et al., 2024)).

3 Experimental Setup

Our experimental analysis guides the design and implementation of our proposed Text-to-SQL
pipeline (§4.4). Our experiments aim to answer empirically three research questions (RQs):

RQI. How does the inclusion of irrelevant schema elements impact SQL generation?

RQ2. How can the trade-off between precision and recall in schema linking techniques be
characterized, and what is its downstream impact on SQL generation?

RQ3. How do other techniques and stages within Text-to-SQL pipelines, aside from schema
linking, comparatively impact SQL generation?

Next, we cover the details of our setup (datasets and models), and our methodology and metrics.

3.1 Datasets

We conducted our experiments using the BIRD dataset (Li et al.| 2023), which is widely considered
to be the most challenging Text-to-SQL benchmark. BIRD contains queries from 95 databases
spanning a wide breadth of domains, such as education and hockey, and is designed to mimic the
complexity of real-world databases. This complexity arises from its “dirty” format, where data,
queries, and external knowledge may contain flaws — queries can be incorrect, database columns
might be improperly described, and databases can contain null values and unexpected encodings. Our
evaluation set consisted of 10% of the entries from each database in the dev set, as done in evaluations
in prior work (Talaei et al.| [2024). Our training set consisted of 500 of the 9, 428 available samples in
the BIRD training dataset.

3.2 Models

We used the following language models with context windows sufficiently large to accommodate the
entire schema for each query in the BIRD evaluation set:

ft:GPT-40 (fine-tuned) Llama 3.1-405b Claude 3.5 Sonnet
GPT-4o0 Llama 3.1-70b Claude 3 Opus
GPT-40-Mini Llama 3.1-8b Mixtral-8x22B
GPT-4-Turbo Deepseek Coder-V2 Gemini 1.5 Pro

We overview the fine-tuning approach of GPT-40 momentarily under methodology (§3.3).

3.3 Methodology
We design an empirical experiment for each research question:

Exp 1. We use a simplified Text-to-SQL pipeline consisting of only schema linking within the
retrieval stage followed by a single attempt at generation. For each query, we provide all
the required columns and vary the amount of irrelevant columns to look at the impact of
irrelevant columns retrieved on the generation.

Exp 2. Using the same simplified pipeline, we introduce different implementations of schema
linking that vary in precision and recall and analyze their impact on generation.

Exp 3. We introduce augmentation, selection, and correction techniques on top of the simplified
pipeline without and with schema linking. We run an ablation study to understand the
relative impact of each technique on end-to-end accuracy.



### TASK SCHEMA:
You are tasked with generating a SQL query according to - Table: satscores
a input user request. - Column: NumTstTakr (INTEGER)

. - Description: Number of Test Takers in this school

You will be provided an input NL query (and potentially - samples: [0, 1, 2, 3, 4]

a hint) o e

##4¢ SCHEMA - Table: school
- Column: NCESDist (TEXT

You are working with the following schema: ( )

{schema}

### FORMATTING
Your output should be of the following JSON format: INPUT QUERY:

N N Name schools in Riverside which the average of average math score
full sql _query": <str: the full SQL query> for SAT is greater than 400, what is the funding type of these
schools?

### OUTPUT

<INPUT QUERY>: {input_query}
<HINT>: {hint} WINT:
<OUTPUT>: N

Average of average math = sum(average math scores) / count(schools).

Figure 2: (Red) Structure of SQL Generation prompt given input query, hint, and schema;
(Blue) Examples of a schema, input query, and query hint which act as contextual inputs to a prompt.

Runs and input/output structure. In all runs, the temperature was set to zero and structured output was
used whenever possible. Given that not all models are capable of reliable structured output generation,
the generated SQL query was fed through an identity call by GPT-40-Mini in JSON mode to handle
any potential issues with output formatting. The relative position of any schema element in an input
prompt follows the same ordering as that provided by the schema definition of the benchmark.

Fine-tuning GPT-4o. Fine-tuning is done iteratively. At each iteration, we first fine-tune on a sample
of N triples: natural language query, SQL query, and schema elements. For each query, the schema
includes all required columns and a random number of irrelevant columns picked uniformly at
random. We then evaluate on BIRD’s dev set. For each failed query, we prompt the model to reason
about the failure, aggregate the reasoning across queries, and use it to pick the sample for the next
iteration. Finally, based on the reasoning, we select a new sample of size N. The iterations stop once
a pre-determined accuracy score is reached.

Generation prompts. Fig.[2|shows the structure of the prompt used for SQL generation as well as an
example schema, input query, and query hint.

3.4 Metrics
We rely on three different metrics in our experimental analysis:

- Execution Accuracy (EX): The metric used by the BIRD benchmark to evaluate end-to-end
Text-to-SQL pipelines. It is the proportion of queries for which the output of the predicted SQL
query is identical to that of the ground truth SQL query. We report EX as a percentage over
queries in the evaluation set.

- False Positive Rate (FPR): For a given query, the proportion of irrelevant schema columns
retrieved over the total number of retrieved columns. We report its average over queries in the
evaluation set.

- Schema Linking Recall (SLR): The proportion of queries for which all required columns are
retrieved over the total number of queries. We use SLR as the downstream generation requires
all required columns to be retrieved to be correct.

All queries in evaluation sets are across multiple databases. Note that BIRD also has a second metric:
valid efficiency score. It assesses the efficiency of correctly predicted queries by comparing their
execution speed to those of the corresponding ground truth queries. In our experiments, we focus on
EX, as our research questions are primarily concerned with SQL generation accuracy.

4 Results

4.1 Experiment 1: Impact of False Positives on Accuracy Given Perfect SLR

In this first experiment, we assess the impact of retrieving irrelevant columns on SQL generation
accuracy. We create a scenario with perfect schema linking recall such that SQL generation issues
are not due to missing required columns.
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varies from 99% to 0%. relationship.

Figure 3: Idealized execution accuracy (IEX), i.e., with perfect schema linking recall (SLR), as
the false positive rate (FPR) varies for different LMs and the relationship between their capability
(maximum IEX) and sensitivity to false positives.

To implement the experiment, we mock the schema linker as follows. We build an oracle that
identifies all columns necessary for a given query using SQLGLOT (SQL Parser and Transpiler). For
an input query, the mocked schema linker uses the oracle to retrieve all required columns and injects
a pre-defined rate of false positives (irrelevant columns retrieved / total columns retrieved). To inject
it, the mocked schema linker samples the irrelevant columns uniformly at random from the target
database. If there is not a sufficient number of columns in the target database, e.g., there are 10
required columns and 900 irrelevant columns are needed to produce a 99% false positive rate, yet
only 50 columns exist in the target database, it supplements from other databases with columns not
conflicting in name. We use a simple pipeline: a retrieval stage containing only the mocked schema
linker followed by a zero-shot generation stage.

We run the pipeline using the 12 selected models (§3.2) for generation while applying an equal
false positive rate to each query in the evaluation set. We run for 10 different rates that are equally
log-spaced from 99% and 0%. We refer to the execution accuracy under perfect schema linking
recall as the idealized execution accuracy (IEX). We track the change in IEX as the false positive rate
changes. The results in Fig. [3a]show the broad trend that IEX improves as the rate of false positives
decreases; specifically, the stage of SQL generation improves as less irrelevant columns are included
as contextual information. At one extreme with a maximum rate of false positives (99%), there is a
~ 28% IEX difference between the worst and best performing models. In the other extreme with no
false positives (0%), the IEX difference between the worst and best performing models gets reduced
to ~ 14%.

We use a model’s maximum IEX in this experiment as a proxy for its SQL generation capability.
Models with higher generation capability, such as Gemini 1.5 Pro, demonstrate greater resilience
to false positives compared to lower-performing ones like L1ama 3.1-8b. We characterize a model’s
resilience to false positives by the relative change in its SQL generation capability as the false positive
rate changes. We define a metric for sensitivity to false positives as the proportion of change in
IEX over the proportion of change in the false positive rate (FPR): d(IEX)/d(FRP). As such,
sensitivity to false positives is the slope derived from the model’s (IEX, FPR) data points. Fig.[3b]
depicts a strong negative correlation between a model’s SQL generation capability (maximum IEX)
and its sensitivity to false positives.

Empirical Observation: As the model’s SQL generation capability improves, its sensitivity to
the presence of irrelevant columns as contextual information for generation decreases. Perhaps
surprisingly, both of these capabilities go hand-in-hand where models that are generally better at SQL
generation are also more resilient to large amounts of irrelevant context.



### TASK

You are tasked with identifying whether or
not a candidate column from a schema is
related to the provided input request.

You will be provided:
- An input NL query (and potentially a hint)
- The schema

### FORMATTING
Your output should be of the following json
format

“rationale": <str: the reasoning behind
decision>,
“relevant": <bool: relevant or not>,

3

### OUTPUT
<INPUT QUERY>: {input_query}
<HINT>: {hint}

<SCHEMA>: {schema}
<OUTPUT>:

### TASK

You are tasked with identifying which tables
from a schema are related to the provided
input request.

You will be provided:
- An input NL query (and potentially a hint)
- The schema

### FORMATTING
Your output should be of the following json
format

“rationale": <str: the reasoning behind
decision>,
"tables": <list[str]: relevant tables>

}

### OUTPUT
<INPUT QUERY>: {input_query}
<HINT>: {hint}

<SCHEMA>: {schema}
<OUTPUT>:

### TASK
You are tasked with identifying which columns from
a schema are related to the provided input request.

You will be provided:
- An input NL query (and potentially a hint)
- The schema

### FORMATTING
Your output should be of the following json format

“rationale”: <str: the reasoning behind
decision>,

<str: table name 1>: <list[str]: relevant
columns>,
}

### OUTPUT
<INPUT QUERY>: {input_query}
<HINT>: {hint}

<SCHEMA>: {schema}
<OUTPUT>:

Figure 4: Prompts used for schema linking. (Left) Single-Column Schema Linking (SCSL): iden-
tifying relevance of a particular column independent of the rest of the schema; (Middle + Right)
Table-to-Column Schema Linking (TCSL): first identifying relevant tables then relevant columns.

4.2 Experiment 2: Impact of False Positives on Accuracy Given Actual SLR

In Experiment 1, all necessary columns for generation are provided, regardless of the false positive
rate. However, in practice, decreasing the amount of false positives requires pruning, which carries
the risk of excluding required columns. Here we assess the extent to which schema linking affects
recall of required columns and the downstream impact of imperfect recall on generation.

We explore four different schema linking approaches with a broad spectrum of ability to reduce the
false positive rate:

- Single-Column Schema Linking (SCSL): Model-determined column-wise relevance. The rele-
vance of each column is assessed without context about other columns and tables. The output is
a boolean flag per column indicating the relevance of each column. This is considered a more
cautious approach less likely to filter out relevant columns.

- Hybrid SCSL (HySCSL): SCSL with added keyword matching aiming for higher SLR.

- Table-then-Column Schema Linking (TCSL): Model-determined table-then-column filtering
approach, as proposed in [Talaei et al.| (2024)) and |Pourreza & Rafiei| (2023)). The model first
filters the schema to the relevant tables, then filters the columns within those tables. The output
is a set of relevant columns and tables. This is a more aggressive filtering approach.

- Hybrid TCSL (HyTCSL): TCSL with added keyword matching aiming for higher SLR.

In our implementation, SCSL and HySCSL use GPT-40-Mini and TCSL and HyTCSL use GPT-4o.
We use GPT-40-Mini with SCSL and HySCSL as GPT-4o0 shows a negligible gain in our experiments
but is much cheaper. The prompts used in our implementation are shown in Fig. ]

Table [I| reports the mean (+ stddev) of the false positive rate (FPR) and the schema linking recall
(SLR) across our four schema linking techniques and without schema filtering at all (full schema)
from 12 different runs. Table [T|shows that these approaches are robust across runs and that as FPR
decreases, i.e., more irrelevant columns are filtered, more required columns can be filtered and SLR
decreases. SLR as obtained from schema linking represents an upper bound on possible EX, where
100% — SLR represents the ratio of queries that will fail in the generation stage due to missing
required columns.

We run the same simplified pipeline as our first experiment: a retrieval stage containing one of the
five schema linking approaches in Table|l|followed by a zero-shot generation stage. We do so across
the 12 selected models (§3.2) and track the associated EX. Fig. [5|shows five EX data points given
the FPR of the five different schema linking approaches. We interpolate between two adjacent (FPR,
EX) data points and show EX as a solid line. We also add the idealized EX from Experiment 1 as a
dashed line. The difference between the two lines shows the EX difference due to changes in SLR.

We observe three different classes of models in our results: models where some schema linking
method improves performance (e.g., Llama 3.1-8b), models where all schema linking methods
degrade performance (e.g., Gemini 1.5 Pro), and models where schema linking has only negligible
impact on performance (e.g., GPT-40-Mini). A model falls into one of these three buckets based
on its SQL generation capability. More capable models — e.g. Gemini 1.5 Pro, ft:GPT-4o,
Llama-3.1-405b — end up with a reduction in EX. Less capable models — e.g. Llama 3.1-8b,
Mixtral-8x22b, Deepseek Coder-V2 —end up with a gain in EX.



Approach FPR SLR

Without schema filtering (Full Schema) 94.62 100.00

Hybrid Single-Column Schema Linking (HySCSL) 82.08 £0.44 90.36 £0.78
Single-Column Schema Linking (SCSL) 67.23+0.92 88.77+0.75
Hybrid Table-to-Column Schema Linking (HyTCSL) 19.85+0.99 83.00 + 0.92
Table-to-Column Schema Linking (TCSL) 9.79+0.73 7744 +1.34

Table 1: The mean (+ stddev) false positive rate (FPR) and schema linking recall (SLR), across 12
runs, associated with five schema linking approaches. The approaches are sorted in descending order
of their ability to reduce false positives. We report the mean values (£ stddev) from 12 runs.
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Figure 5: The execution accuracy (EX) given different schema linking and idealized EX, assuming
perfect Schema Linking Recall (SLR) as the false positive rate (FPR) varies. EX as a solid line and
idealized EX as a dashed line.

Empirical Observation: As the model’s SQL generation capability improves, the benefit of schema
linking diminishes. In some cases, this can result in a net reduction in accuracy due to missing
required columns for generation.

4.3 Experiment 3: Impact of Non-Filtering Stages and Techniques

Instead of filtering contextual information through schema linking, we focus on techniques that
preserve information. We assess the gains of using augmentation and selection techniques as well as
adding a correction stage, which are detailed as follows:

- Augmentation: We add contextual information by: (i) expanding column descriptions and add
query hints and (ii) adding structural expectations of the output, e.g., expected orderings and
aggregations, using CoT planning.

- Correction: After generating a candidate SQL query, we iteratively apply corrections through
re-generation based on database execution errors (Wang et al.,[2018b)), revision through database
administrator instructions (Talaei et al., 2024), and model-based feedback similar to Reflex-



Execution Accuracy (EX)

Method
ft: GPT-40 Gemini 1.5 Pro Llama 3.1-405b

Full pipeline 67.35 60.54 59.18

w/o Augmentation 64.63 (| 2.72) 60.54 59.86 (1 0.68)
w/o Selection 65.31 (1 2.04) 57.82(]2.72) 58.50 (| 0.68)
w/o Correction 65.99 (L 1.36)  57.14 (| 3.40) 55.78 (| 3.40)
w/ TCSL 62.58 (1 4.77)  55.78 (] 4.76) 56.46 (1 2.72)
w/ SCSL 55.78 (L 11.57) 55.10 (| 5.44) 54.42 (1 4.76)
Base model 59.18 (1 8.17)  57.82 (] 2.72) 53.74 (] 5.44)

Table 2: Ablation of different methods reporting the execution accuracy (EX) for fine-tuned GPT-4o,
Gemini 1.5 Pro, and Llama 3.1-405b. The table compares the full pipeline to variations without
augmentation, selection, and correction techniques; with Table-to-Column Schema Linking (TCSL)
and Single-Column Schema Linking (SCSL); and as base model performance. Reductions (J) or
increases (1) in accuracy compared to the full pipeline are indicated.

ion (Shinn et al., [2023). We use these corrections to generate instructions to also augment
contextual information.

- Selection: We use self-consistency (Wang et al., 2023) to generate multiple responses and select
the most consistent result. We use selection across the whole pipeline for augmentation, SQL
generation, and SQL correction.

We implemented a full pipeline using zero-shot generation. The pipeline contained augmentation,
correction and selection as described above and no schema linking, i.e., always providing the full
schema. We ran an ablation to understand the relative impact of each technique or stage using the three
top performing models from Experiment 1: Llama 3.1-405b, Gemini 1.5 Pro, and ft:GPT-4o.
Table 2] shows the execution accuracy (EX) of the full pipeline and 6 other variations: without
augmentation, correction, or selection, with schema linking (TCSL and SCSL from Experiment 2),
and without any of these techniques i.e., providing the full schema alone to a base model. We find
that all techniques improve accuracy to varying degrees except schema linking with a noticeable
difference when evaluating the full pipeline.

Empirical Observation: Each of augmentation, selection, and correction have a noticeable positive
impact on generation accuracy. Note that even though base models such as Gemini 1.5 Pro may
show comparable performance to a fine-tuned GPT-40 in SQL generation, they differ when evaluated
within end-to-end Text-to-SQL pipelines. For instance, augmentation leads to major benefits with
GPT-40 when compared with Gemini 1.5 Pro. An interesting research direction is understanding
whether the relative benefits from augmentation between models hold across other tasks as well.

4.4 Discussion and Proposed Approach

Our empirical observations reveal several key insights that guide our proposed approach.

First, as a model’s SQL generation capability improves, its ability to retrieve relevant schema elements
from a full schema in its input context also improves. As such, schema linking for state-of-the-art
LLMs is less important if the schema fully fits within the context window. However, it is still helpful
for models with lower SQL generation accuracy as they struggle with false positives. In our approach,
we maximize the use of the LLM context window to minimize filtering required columns.

Second, we find that combining augmentation, selection, and correction techniques heavily impacts
the accuracy of a Text-to-SQL pipeline. However, the impact is not the same when evaluated in
an end-to-end fashion even when comparing models with similar generation capability. In our
approach, we adopt augmentation, selection, and correction as detailed from the implementation in
Experiment 3. We further use £t : GPT-4o0 as the model of choice for generation since it provides the
best end-to-end accuracy and makes the best use of augmentation.

These design choices yield an approach that ranks first on execution accuracy and second on valid
efficiency score on the BIRD benchmark.



5 Conclusion

Is it the death of schema linking? For state-of-the-art models, if the schema fits within the context
length — yes. However, for smaller or prior generation models, the accuracy gains from schema
linking often justify the potential loss. Additionally, in real-world data-warehousing scenarios, the
entire schema often exceeds the context window, requiring a multi-stage information retrieval pipeline.
In such cases, we argue for maximally using the LLM context window in picking the top-K relevant
columns to retain the necessary schema elements. We conclude that while the need for schema linking
is highly use-case dependent, its importance is diminishing as costs decrease, context windows widen,
and generation capabilities improve.
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